
Designing High-Performance and Scalable Collectives for
the Many-core Era: The MVAPICH2 Approach

S. Chakraborty, M. Bayatpour, J. Hashmi, H. Subramoni and DK Panda
The Ohio State University

E-mail: {chakraborty.52,bayatpour.1,hashmi.29,subramoni.1,panda.2}@osu.edu

IXPUG ’18 Presentation

Presenter: Jahanzeb Hashmi

IXPUG ‘18 2Network Based Computing Laboratory

Parallel Programming Models Overview
P1 P2 P3

Shared Memory

P1 P2 P3

Memory Memory Memory

P1 P2 P3

Memory Memory Memory
Logical shared memory

Shared Memory Model

SHMEM, DSM

Distributed Memory Model

MPI (Message Passing Interface)

Partitioned Global Address Space (PGAS)

Global Arrays, UPC, Chapel, X10, CAF, …

• Programming models provide abstract machine models

• Models can be mapped on different types of systems

– e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

• Programming models offer various communication primitives

– Point-to-point (between pair of processes/threads)

– Remote Memory Access (directly access memory of another process)

– Collectives (group communication)

IXPUG ‘18 3Network Based Computing Laboratory

Supporting Programming Models for Multi-Petaflop and
Exaflop Systems: Challenges

Programming Models
MPI, PGAS (UPC, Global Arrays, OpenSHMEM), CUDA, OpenMP,

OpenACC, Cilk, Hadoop (MapReduce), Spark (RDD, DAG), etc.

Application Kernels/Applications

Networking Technologies
(InfiniBand, 40/100GigE,

Aries, and Omni-Path)

Multi-/Many-core
Architectures

Accelerators
(GPU and FPGA)

Middleware Co-Design
Opportunities

and
Challenges

across Various
Layers

Performance
Scalability
Resilience

Communication Library or Runtime for Programming Models
Point-to-point

Communication
Collective

Communication
Energy-

Awareness
Synchronization

and Locks
I/O and

File Systems
Fault

Tolerance

IXPUG ‘18 4Network Based Computing Laboratory

99

58

21

31

95

63

23
27

65

0

25

50

75

100

MPI-FFT VASP AMG COSMO Graph500 MiniFE MILC DL-POLY HOOMD-blue

P
e

r
c
e

n
t
a

g
e

 o
f

C
o

m
m

u
n

ic
a

t
io

n
 T

im
e

 S
p

e
n

t

in
 C

o
ll

e
c
t
iv

e
 O

p
e

r
a

t
io

n
s
 (

%
)

Why Collective Communication Matters?

http://www.hpcadvisorycouncil.com

A
ll

to
a

ll
,

B
c
a

s
t

A
ll

to
a

ll
,

A
ll

r
e

d
u

c
e

,
A

ll
to

a
ll

A
ll

r
e

d
u

c
e

,
B

c
a

s
t
,

A
ll

to
A

ll

A
ll

r
e

d
u

c
e

A
ll

r
e

d
u

c
e

,
B

c
a

s
t

A
ll

r
e

d
u

c
e

A
ll

r
e

d
u

c
e

A
ll

r
e

d
u

c
e

A
ll

r
e

d
u

c
e

,
B

c
a

s
t

• HPC Advisory Council (HPCAC) MPI application profiles

• Most application profiles showed majority of time spent in collective operations

• Optimizing collective communication directly impacts scientific applications

leading to accelerated scientific discovery

IXPUG ‘18 5Network Based Computing Laboratory

Why different algorithms of even a dense collective such as Alltoall do not achieve
theoretical peak bandwidth offered by the system?

Are Collective Designs in MPI ready for Manycore Era?

1

10

100

1000

10000

100000

1000000

1 2 4 8 16 32 64 12
8

25
6

51
2

1K

2K

4K

8K

 1
6K

 3
2K

 6
4K

 1
28

K
 2

56
K

51

2K

 1
M

 2

M

 4
M

Brucks
Recursive-Doubling
Scatter-Destination
Pairwise-Exchange
Theoretical-Peak

Ef
fe

ct
iv

e
ba

nd
w

id
th

 (M
B/

s)

Alltoall Algorithms on single KNL 7250 in Cache-mode on 64 MPI processes
using MVAPICH2-2.3rc1

~35%
of peak

IXPUG ‘18 6Network Based Computing Laboratory

• Exploiting high concurrency and high bandwidth offered
by modern architectures

• Designing “zero-copy” and “contention-free” Collective
Communication

• Efficient hardware offloading for better overlap of
communication and computation

Broad Challenges due to Architectural Advances

How does MVAPICH2 as an MPI library tackles these challenges and
provide optimal collective designs for emerging multi-/many-cores?

IXPUG ‘18 7Network Based Computing Laboratory

Overview of the MVAPICH2 Project
• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 2,875 organizations in 86 countries

– More than 464,000 (> 0.46 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (Nov ‘17 ranking)

• 1st, 10,649,600-core (Sunway TaihuLight) at National Supercomputing Center in Wuxi, China

• 9th, 556,104 cores (Oakforest-PACS) in Japan

• 12th, 368,928-core (Stampede2) at TACC

• 17th, 241,108-core (Pleiades) at NASA

• 48th, 76,032-core (Tsubame 2.5) at Tokyo Institute of Technology

– Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade

http://mvapich.cse.ohio-state.edu/

IXPUG ‘18 8Network Based Computing Laboratory

Architecture of MVAPICH2 Software Family

High Performance Parallel Programming Models

Message Passing Interface
(MPI)

PGAS
(UPC, OpenSHMEM, CAF, UPC++)

Hybrid --- MPI + X
(MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime
Diverse APIs and Mechanisms

Point-to-
point

Primitives

Collectives
Algorithms

Energy-

Awareness

Remote
Memory
Access

I/O and

File Systems

Fault

Tolerance
Virtualization

Active
Messages

Job Startup
Introspection

& Analysis

Support for Modern Networking Technology
(InfiniBand, iWARP, RoCE, Omni-Path)

Support for Modern Multi-/Many-core Architectures
(Intel-Xeon, OpenPower, Xeon-Phi, ARM, NVIDIA GPGPU)

Transport Protocols Modern Features

RC XRC UD DC UMR ODP
SR-
IOV

Multi
Rail

Transport Mechanisms
Shared

Memory
CMA IVSHMEM

Modern Features

MCDRAM* NVLink* CAPI*

* Upcoming

XPMEM*

IXPUG ‘18 9Network Based Computing Laboratory

MVAPICH2 Software Family
High-Performance Parallel Programming Libraries

MVAPICH2 Support for InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE

MVAPICH2-X Advanced MPI features, OSU INAM, PGAS (OpenSHMEM, UPC, UPC++, and CAF), and
MPI+PGAS programming models with unified communication runtime

MVAPICH2-GDR Optimized MPI for clusters with NVIDIA GPUs

MVAPICH2-Virt High-performance and scalable MPI for hypervisor and container based HPC cloud

MVAPICH2-EA Energy aware and High-performance MPI

MVAPICH2-MIC Optimized MPI for clusters with Intel KNC

Microbenchmarks

OMB Microbenchmarks suite to evaluate MPI and PGAS (OpenSHMEM, UPC, and UPC++)
libraries for CPUs and GPUs

Tools

OSU INAM Network monitoring, profiling, and analysis for clusters with MPI and scheduler
integration

OEMT Utility to measure the energy consumption of MPI applications

IXPUG ‘18 10Network Based Computing Laboratory

• Exploiting high concurrency and high bandwidth offered by modern

architectures for MPI collectives design

– Point-to-point

– Direct Shared-memory

– Data Partitioned Multi-Leader (DPML)

• Designing “zero-copy” and “contention-free” Collective Communication
– Contention-aware designs

– True zero-copy collectives

• Hardware offloading for better communication and computation overlap
– SHARP based offloaded collectives

– CORE-Direct based Non-blocking collectives

Agenda

IXPUG ‘18 11Network Based Computing Laboratory

• Commonly used approach in implementing collectives

• Easy to express algorithms in message passing semantics

• A naïve Broadcast could be a series of “send” operations from
root to all the non-root processes

• Relies on the implementation of point to point primitives

• Limited by the overheads exposed by these primitives

– Tag-matching

– Rendezvous hand-shake

Collective Designs based on Point-to-point Primitives

IXPUG ‘18 12Network Based Computing Laboratory

// root = 0
// msg-size > eager-size
if (rank == 0) {
for (i = 1 to n-1) {
MPI_Send(buf,...i,...);

}
} else {
MPI_Recv(buf,...0,...);

}

A Naïve Example of MPI_Bcast when using MPI_Send/MPI_Recv
MPI_Send MPI_Recv MPI_Recv

MPI_Send

RTS

CTS

Application skew

and library overhead

Fin

CTS

RTS

MPI_Send
.

.

.

Data transfer

Data transfer

• Overheads of
handshake for
each rendezvous
message transfer

• Is there a better
way?

Fin

Tag matching

Receiver wasting
CPU cycles
waiting for
Sender’s request

rootMPI_Send

MPI_Recv MPI_Recv

IXPUG ‘18 13Network Based Computing Laboratory

• A large shared-memory region
– Collective algorithms are realized by shared-

memory copies and synchronizations

– Good performance for small message via
exploiting cache locality

– Avoid overheads associated with MPI point-to-
point implementations

• Requires one additional copy for each transfer

• Performance degradations for large message
communication

– memcpy () is the dominant cost for large messages

• Most MPI libraries use some variant of Direct
SHMEM collectives

Direct Shared Memory based Collectives

Reduction collectives perform even
worse with SHMEM based design
because of compute + memcpy

1

10

100

1000

10000

100000

1000000

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

Message Size

KNL (64 Processes)

Direct SHMEM

Point-to-point

Personalized All-to-All

IXPUG ‘18 14Network Based Computing Laboratory

Data Partitioning based Multi-Leader (DPML) Designs
• Hierarchical algorithms delegate lot of computation on the “node-leader”

– Leader process responsible for inter-node reductions while intra-node non-
root processes wait for the leader

• Existing designs for MPI_Allreduce do not take advantage of the vast
parallelism available in modern multi-/many-core processors

• DPML - a new solution for MPI_Allreduce
• Takes advantage of the parallelism offered by

– Multi-/many-core architectures
– High throughput and high-end features offered by InfiniBand and Omni-Path

• Multiple partitions of reduction vectors for arbitrary number of leaders
M. Bayatpour, S. Chakraborty, H. Subramoni, X. Lu, and D. K. Panda, Scalable Reduction Collectives with Data Partitioning-based
Multi-Leader Design, Supercomputing '17.

IXPUG ‘18 15Network Based Computing Laboratory

0

200

400

600

800

1000

1200

8K 16K 32K 64K 128K 256K

La
te

nc
y

(u
s)

Message Size

MVAPICH2-2.2GA

DPML

IMPI

Performance of DPML MPI_Allreduce On Different Networks and
Architectures

• 2X improvement of over

MVAPICH2 at 256K

• Higher benefits of DPML as the

message size increases

XEON + IB (64 Nodes, 28 PPN)

2XLow
er is better

0

1000

2000

3000

4000

8K 16K 32K 64K 128K 256K
Message Size

MVAPICH2-2.2GA
DPML
IMPI

KNL + OmniPath (64 Nodes 64 PPN)

4X

• Benefits of DPML sustained on

KNL+OmniPath even at 4096 processes

• With 32K bytes, 4X improvement over

MVAPICH2

IXPUG ‘18 16Network Based Computing Laboratory

Scalability of DPML Allreduce On Stampede2-KNL (10,240 Processes)

0

50

100

150

200

250

300

4 8 16 32 64 128 256 512 1024 2048 4096

La
te

nc
y

(u
s)

Message Size

MVAPICH2 DPML IMPI

0
200
400
600
800

1000
1200
1400
1600
1800
2000

8K 16K 32K 64K 128K 256K

Message Size

MVAPICH2 DPML IMPI

OSU Micro Benchmark (64 PPN)

2.4X

• For MPI_Allreduce latency with 32K bytes, DPML design can reduce the latency by 2.4X

Available in MVAPICH2-X 2.3b

Low
er is better

IXPUG ‘18 17Network Based Computing Laboratory

Performance Benefits of DPML AllReduce on MiniAMR Kernel

0

20

40

60

80

448 896 1792

Number of Processes

MVAPICH2
DPML
IMPI

0

10

20

30

40

50

512 1024 1280M
es

h
Re

fin
em

en
t

Ti
m

e
(s

)

Number of Processes

MVAPICH2
DPML
IMPI

• For MiniAMR Application with 4096

processes, DPML can reduce the latency

by 2.4X on KNL + Omni-Path cluster

2.4X 1.5X

KNL + Omni-Path (32 PPN) XEON + Omni-Path (28 PPN)

Low
er is better

• On XEON + Omni-Path, with 1792

processes, DPML can reduce the latency

by 1.5X

IXPUG ‘18 18Network Based Computing Laboratory

• Exploiting high concurrency and high bandwidth offered by modern
architectures for MPI collectives design

– Point-to-point

– Direct Shared-memory

– Data Partitioned Multi-Leader (DPML)

• Designing “Zero-copy” and “contention-free” Collective Communication
– Contention-aware designs

– True zero-copy collectives

• Hardware offloading for better communication and computation overlap
– SHARP based offloaded collectives

– CORE-Direct based Non-blocking collectives

Agenda

IXPUG ‘18 19Network Based Computing Laboratory

How Kernel-assisted “Zero-copy” works?

Kernel

MPI Sender MPI Receiver

Send
Buffer

Recv
Buffer

Shared Memory

Kernel

MPI Sender MPI Receiver

Send
Buffer

Recv
Buffer

Shared Memory – SHMEM
Requires two copies

No system call overhead
Better for Small Messages

Kernel-Assisted Copy
Requires single copy
System call overhead

Better for Large Messages

IXPUG ‘18 20Network Based Computing Laboratory

A Variety of Available “Zero”-Copy Mechanisms
LiMIC KNEM CMA XPMEM

Permission Check Not Supported Supported Supported Supported

Availability Kernel Module Kernel Module Included in Linux 3.2+ Kernel Module

memcpy() invoked at Kernel-space Kernel-space Kernel-space User-space

memcpy() granularity Page size Page size Page size Any size

LiMIC KNEM CMA XPMEM
MVAPICH2 √ x √ √ (upcoming release)

OpenMPI 2.1.0 x √ √ √

Intel MPI 2017 x x √ x

Cray MPI x x √ √

MPI Library Support

Cross Memory Attach(CMA) is widely supported kernel-assisted mechanism

IXPUG ‘18 21Network Based Computing Laboratory

• Direct algorithm designs based on kernel-
assisted zero-copy mechanism

– “Map” application buffer pages inside kernel

– Issue “Put” or “Get” operations directly on the
application buffers

• Good performance for large messages
– Avoid unnecessary copy overheads of SHMEM

• Performance depends on the communication
pattern of the collective primitive

• Does not offer “zero-copy” for Reduction
Collectives

Direct Kernel-assisted (CMA-based) Collectives

What about contention?

1

100

10000

1000000

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

Message Size

KNL (64 Processes)

Direct SHMEM

Direct kernel-assisted

Point-to-point

CMA based Personalized All-to-All

> 50% better

La
te

nc
y

(u
s)

IXPUG ‘18 22Network Based Computing Laboratory

Impact of Collective Communication Pattern on CMA Collectives

1

10

100

1000

10000

100000

1000000

1K 4K 16K 64K 256K 1M 4M
Message Size

Different Processes
PPN-2
PPN-4
PPN-8
PPN-16
PPN-32
PPN-64

1

10

100

1000

10000

100000

1000000

1K 4K 16K 64K 256K 1M 4M
Message Size

Same Process, Same Buffer

1

10

100

1000

10000

100000

1000000

1K 4K 16K 64K 256K 1M 4M
Message Size

Same Process, Diff Buffers

La
te

nc
y

(u
s)

All-to-All – Good Scalability One-to-All - Poor Scalability One-to-All – Poor Scalability

> 100x
worse

> 100x
worseNo increase

with PPN

P0

P1
P3

P2

P0

P1 P3

P2

P0

P1 P3

P2

Contention is at
Process level

IXPUG ‘18 23Network Based Computing Laboratory

Contention-aware CMA Collective

1

10

100

1000

10000

100000

1000000

1K 4K 16K 64K 256K 1M 4M
Message Size

KNL (64 Processes)

MVAPICH2

Intel MPI

OpenMPI

Proposed

La
te

nc
y

(u
s)

• Up to 5x and 2x improvement for MPI_Scatter and MPI_Bcast on KNL
• For Bcast, improvements obtained for large messages only (p-1 copies with CMA, p copies with

Shared memory)
• AlltoAll Large message performance bound by system bandwidth (5%-20% improvement)
• Fallback to SHMEM for small messages

~ 5x

better

S. Chakraborty, H. Subramoni, and D. K. Panda, Contention Aware Kernel-Assisted MPI Collectives for Multi/Many-core Systems, IEEE
Cluster ’17, BEST Paper Finalist

MPI_Scatter MPI_Bcast

1

10

100

1000

10000

100000

1K 4K 16K 64K 256K 1M 4M
Message Size

KNL (64 Processes)

MVAPICH2

Intel MPI

OpenMPI

Proposed

Use

CMA

Use

SHMEM 1

10

100

1000

10000

100000

1000000

1K 4K 16K 64K 256K 1M 4M
Message Size

KNL (64 Processes)

MVAPICH2

Intel MPI

OpenMPI

Proposed

MPI_AlltoAll

IXPUG ‘18 24Network Based Computing Laboratory

Multi-Node Scalability Using Two-Level Algorithms

1

10

100

1000

10000

100000

1000000

1K 4K 16K 64K 256K 1M 4M

Message Size

KNL (2 Nodes, 128 procs)

MVAPICH2
Intel MPI
OpenMPI
Tuned CMA

La
te

nc
y

(u
s)

1

10

100

1000

10000

100000

1000000

1K 4K 16K 64K 256K 1M

Message Size

KNL (4 Nodes, 256 Procs)

MVAPICH2
Intel MPI
OpenMPI
Tuned CMA

1

10

100

1000

10000

100000

1000000

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

Message Size

KNL (8 Nodes, 512 Procs)

MVAPICH2
Intel MPI
OpenMPI
Tuned CMA

• Significantly faster intra-node communication
• New two-level collective designs can be

composed
• 4x-17x improvement in 8 node Scatter and

Gather compared to default MVAPICH2

~ 2.5x
Better

~ 3.2x
Better

~ 4x
Better

~ 17x
Better

Can we have zero-copy “Reduction”
collectives with this approach?
Do you see the problem here???

1. Contention “avoidance” –
Not removal

2. Reduction requires extra
copies

IXPUG ‘18 25Network Based Computing Laboratory

• Offload Reduction computation and communication to peer MPI ranks
– Every Peer has direct “load/store” access to other peer’s buffers

– Multiple pseudo roots independently carry-out reductions for intra-and inter-node

– Directly put reduced data into root’s receive buffer

• True “Zero-copy” design for Allreduce and Reduce
– No copies require during the entire duration of Reduction operation

– Scalable to multiple nodes

• Zero contention overheads as memory copies happen in “user-space”

Shared Address Space (XPMEM-based) Collectives

J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. Panda, Designing Efficient Shared Address Space Reduction Collectives for Multi-/Many-cores,
International Parallel & Distributed Processing Symposium (IPDPS '18), May 2018.

IXPUG ‘18 26Network Based Computing Laboratory

Shared Address Space (XPMEM)-based Collectives Design

1

10

100

1000

10000

100000

16K 32K 64K 128K 256K 512K 1M 2M 4M

La
te

nc
y

(u
s)

Message Size

MVAPICH2
Intel MPI
MVAPICH2-XPMEM

OSU_Allreduce (Broadwell 256 procs)

• “Shared Address Space”-based true zero-copy Reduction collective designs in MVAPICH2

• Offloaded computation/communication to peers ranks in reduction collective operation

• Up to 4X improvement for 4MB Reduce and up to 1.8X improvement for 4M AllReduce

1.8X

1

10

100

1000

10000

100000

16K 32K 64K 128K 256K 512K 1M 2M 4M
Message Size

MVAPICH2

Intel MPI

MVAPICH2-XPMEM

OSU_Reduce (Broadwell 256 procs)

4X

37%

Will be available in upcoming MVAPICH2-X release

50%

mailto:panda@cse.ohio-state.edu

IXPUG ‘18 27Network Based Computing Laboratory

Application-Level Benefits of XPMEM-Based Collectives

MiniAMR (Broadwell, ppn=16)

• Up to 20% benefits over IMPI for CNTK DNN training using AllReduce
• Up to 27% benefits over IMPI and up to 15% improvement over MVAPICH2 for

MiniAMR application kernel

0

200

400

600

800

28 56 112 224

Ex
ec

ut
io

n
Ti

m
e

(s
)

No. of Processes

Intel MPI
MVAPICH2
MVAPICH2-XPMEM

CNTK AlexNet Training
(Broadwell, B.S=default, iteration=50, ppn=28)

0

20

40

60

80

16 32 64 128 256

Ex
ec

ut
io

n
Ti

m
e

(s
)

No. of Processes

Intel MPI
MVAPICH2
MVAPICH2-XPMEM20%

9%

27%

15%

IXPUG ‘18 28Network Based Computing Laboratory

• Exploiting high concurrency and high bandwidth offered by modern
architectures for MPI collectives design

– Point-to-point

– Direct Shared-memory

– Data Partitioned Multi-Leader (DPML)

• Designing “zero-copy” and “contention-free” Collective Communication
– Contention-aware designs

– True zero-copy collectives

• Hardware offloading for better communication and computation overlap
– SHARP based offloaded collectives

– CORE-Direct based Non-blocking collectives

Agenda

IXPUG ‘18 29Network Based Computing Laboratory

• Application processes schedule collective operation

• Check periodically if operation is complete

• Overlap of computation and communication => Better Performance

• Catch: Who will progress communication

Concept of Non-blocking Collectives
Application

Process

Application

Process

Application

Process

Application

Process

Computation

Communication

Communication

Support Entity

Communication

Support Entity

Communication

Support Entity

Communication

Support Entity

Schedule

Operation

Schedule

Operation

Schedule

Operation

Schedule

Operation

Check if

Complete

Check if

Complete

Check if

Complete

Check if

Complete

Check if

Complete

Check if

Complete

Check if

Complete

Check if

Complete

IXPUG ‘18 30Network Based Computing Laboratory

§ Management and execution of MPI operations in the
network by using SHArP
§ Manipulation of data while it is being transferred in the switch

network

§ SHArP provides an abstraction to realize the reduction
operation
§ Defines Aggregation Nodes (AN), Aggregation Tree, and

Aggregation Groups

§ AN logic is implemented as an InfiniBand Target Channel
Adapter (TCA) integrated into the switch ASIC *

§ Uses RC for communication between ANs and between AN and
hosts in the Aggregation Tree *

Offloading with Scalable Hierarchical Aggregation Protocol (SHArP)

Physical Network Topology*

Logical SHArP Tree** Bloch et al. Scalable Hierarchical Aggregation Protocol (SHArP): A Hardware Architecture for Efficient Data Reduction

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu

IXPUG ‘18 31Network Based Computing Laboratory

0

0.1

0.2

(4,28) (8,28) (16,28)

Ex
ec

ut
io

n
Ti

m
e

(s
)

(Number of Nodes, PPN)

MVAPICH2
MVAPICH2-SHArP

Mesh Refinement Time of MiniAMR

SHArP based blocking Allreduce Collective Designs in MVAPICH2

0

0.1

0.2

0.3

0.4

(4,28) (8,28) (16,28)

Ex
ec

ut
io

n
Ti

m
e

(s
)

(Number of Nodes, PPN)

MVAPICH2

MVAPICH2-SHArP

Avg DDOT Allreduce time of HPCG

SHArP Support is available since MVAPICH2 2.3a

M. Bayatpour, S. Chakraborty, H. Subramoni, X. Lu, and D. K. Panda, Scalable Reduction Collectives with Data Partitioning-based Multi-

Leader Design, SuperComputing '17.

13%
12%

IXPUG ‘18 32Network Based Computing Laboratory

0

0.2

0.4

0.6

56 224 448

D
D

O
T

 T
im

in
g

(S
e

co
n

d
s)

Number of Processes

MVAPICH2

 NUMA-Aware (proposed)

MVAPICH2+SHArP

0

20

40

60

4 8 16 32 64 128 256 512 1K 2K 4K

La
te

n
cy

 (
u

s)

Message Size (Byte)

MVAPICH2

 NUMA-aware (Proposed)

MVAPICH2+SHArP

Performance of NUMA-aware SHArP Design on XEON + IB Cluster

• As the message size decreases, the benefits of using Socket-based design increases

• NUMA-aware design can reduce the latency by up to 23% for DDOT phase of HPCG

and up to 40% for micro-benchmarks

OSU Micro Benchmark (16 Nodes, 28 PPN) HPCG (16 nodes, 28 PPN)

23%

40%

Low
er is better

IXPUG ‘18 33Network Based Computing Laboratory

0

2

4

6

8

10

4 8 16 32 64 128

La
te

nc
y

(u
s)

Message Size (Bytes)

1 PPN*, 8 Nodes

MVAPICH2

MVAPICH2-SHArP

0.1

1

10

100

4 8 16 32 64 128

O
ve

rl
ap

 (%
)

Message Size (Bytes)

1 PPN, 8 Nodes

MVAPICH2

MVAPICH2-SHArP

SHArP based Non-Blocking Allreduce in MVAPICH2
MPI_Iallreduce Benchmark

2.3x

*PPN: Processes Per Node

• Complete offload of Allreduce collective operation to “Switch”

o higher overlap of communication and computation

Available since MVAPICH2 2.3a

Low
er is better

H
ig

he
r i

s b
et

te
r

IXPUG ‘18 34Network Based Computing Laboratory

• Mellanox CORE-Direct technology allows for offloading the

collective communication to the network adapter

• MVAPICH2 supports CORE-Direct based offloading of non-

blocking collectives

– Covers all the non-blocking collectives

– Enabled by configure and runtime parameters

• CORE-Direct based MPI_Ibcast design improves the

performance of High Performance Linpack (HPL) benchmark

NIC offload based Non-blocking Collectives using CORE-Direct

Available since MVAPICH2-X 2.2a

IXPUG ‘18 35Network Based Computing Laboratory

Co-designing HPL with Core-Direct and Performance Benefits

0

0.2

0.4

0.6

0.8

1

1.2

10 20 30 40 50 60 70N
or

m
al

iz
ed

 H
PL

 P
er

fo
rm

an
ce

HPL Problem Size (N) as % of Total Memory

HPL-Offload HPL-1ring HPL-Host

HPL Performance Comparison with 512 Processes
HPL-Offload consistently offers higher throughput than HPL-1ring and HPL-
Host. Improves peak throughput by up to 4.5 % for large problem sizes

4.5%

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000

0
10
20
30
40
50
60
70
80
90

64 128 256 512

T
hr

ou
gh

pu
t (

G
F

lo
ps

)

M
em

or
y

C
on

su
m

pt
io

n
(%

)

System Size (Number of Processes)

HPL-Offload HPL-1ring HPL-Host

HPL-Offload HPL-1ring HPL-Host

HPL-Offload surpasses the peak throughput of HPL-1ring with
significantly smaller problem sizes and run-times!

K. Kandalla, H. Subramoni, J. Vienne, S. Pai Raikar, K. Tomko, S. Sur, and D K Panda,
Designing Non-blocking Broadcast with Collective Offload on InfiniBand Clusters: A Case Study with HPL, (HOTI 2011)

H
ig

he
r

is
 b

et
te

r

IXPUG ‘18 36Network Based Computing Laboratory

• Many-core nodes will be the foundation blocks for emerging Exascale systems

• Communication mechanisms and runtimes need to be re-designed to take
advantage of the high concurrency offered by manycores

• Presented a set of novel designs for collective communication primitives in
MPI that address several challenges

• Demonstrated the performance benefits of our proposed designs under a
variety of multi-/many-cores and high-speed networks

• Some of these designs are already available in MVAPICH2 libraries

• The new designs will be available in upcoming MVAPICH2 libraries

Concluding Remarks

IXPUG ‘18 37Network Based Computing Laboratory

Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

hashmi.29@osu.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
mailto:Hashmi.29osu.edu@

