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Parallel Programming Models Overview
P1 P2 P3

Shared Memory

P1 P2 P3

Memory Memory Memory

P1 P2 P3

Memory Memory Memory
Logical shared memory

Shared Memory Model

SHMEM, DSM

Distributed Memory Model 

MPI (Message Passing Interface)

Partitioned Global Address Space (PGAS)

Global Arrays, UPC, Chapel, X10, CAF, …

• Programming models provide abstract machine models

• Models can be mapped on different types of systems

– e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

• Programming models offer various communication primitives

– Point-to-point (between pair of processes/threads)

– Remote Memory Access (directly access memory of another process)

– Collectives (group communication)
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Supporting  Programming Models for Multi-Petaflop and 
Exaflop Systems: Challenges 

Programming Models
MPI, PGAS (UPC, Global Arrays, OpenSHMEM), CUDA, OpenMP, 

OpenACC, Cilk, Hadoop (MapReduce), Spark (RDD, DAG), etc.

Application Kernels/Applications

Networking Technologies
(InfiniBand, 40/100GigE, 

Aries, and Omni-Path)

Multi-/Many-core
Architectures

Accelerators
(GPU and FPGA)

Middleware Co-Design 
Opportunities 

and 
Challenges 

across Various 
Layers

Performance
Scalability
Resilience

Communication Library or Runtime for Programming Models
Point-to-point 

Communication
Collective 

Communication
Energy-

Awareness
Synchronization 

and Locks
I/O and

File Systems
Fault

Tolerance
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Why Collective Communication Matters?

http://www.hpcadvisorycouncil.com
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• HPC Advisory Council (HPCAC) MPI application profiles

• Most application profiles showed majority of time spent in collective operations

• Optimizing collective communication directly impacts scientific applications 

leading to accelerated scientific discovery
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Why different algorithms of even a dense collective such as Alltoall do not achieve 
theoretical peak bandwidth offered by the system?

Are Collective Designs in MPI ready for Manycore Era?
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Alltoall Algorithms on single KNL 7250 in Cache-mode on 64 MPI processes 
using MVAPICH2-2.3rc1

~35% 
of peak
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• Exploiting high concurrency and high bandwidth offered 
by modern architectures

• Designing “zero-copy” and “contention-free” Collective 
Communication

• Efficient hardware offloading for better overlap of 
communication and computation

Broad Challenges due to Architectural Advances

How does MVAPICH2 as an MPI library tackles these challenges and 
provide optimal collective designs for emerging multi-/many-cores?
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Overview of the MVAPICH2 Project
• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs  (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 2,875 organizations in 86 countries

– More than 464,000 (> 0.46 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (Nov ‘17 ranking)

• 1st, 10,649,600-core (Sunway TaihuLight) at National Supercomputing Center in Wuxi, China 

• 9th, 556,104 cores (Oakforest-PACS) in Japan

• 12th, 368,928-core (Stampede2) at TACC 

• 17th, 241,108-core (Pleiades) at NASA 

• 48th, 76,032-core (Tsubame 2.5) at Tokyo Institute of Technology

– Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade

http://mvapich.cse.ohio-state.edu/
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Architecture of MVAPICH2 Software Family

High Performance Parallel Programming Models

Message Passing Interface
(MPI)

PGAS
(UPC, OpenSHMEM, CAF, UPC++)

Hybrid --- MPI + X
(MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime
Diverse APIs and Mechanisms

Point-to-
point 

Primitives

Collectives 
Algorithms

Energy-

Awareness

Remote 
Memory 
Access

I/O and

File Systems

Fault

Tolerance
Virtualization

Active 
Messages

Job Startup
Introspection 

& Analysis

Support for Modern Networking Technology
(InfiniBand, iWARP, RoCE, Omni-Path)

Support for Modern Multi-/Many-core Architectures
(Intel-Xeon, OpenPower, Xeon-Phi, ARM, NVIDIA GPGPU)

Transport Protocols Modern Features

RC XRC UD DC UMR ODP
SR-
IOV

Multi 
Rail

Transport Mechanisms
Shared 

Memory
CMA IVSHMEM

Modern Features

MCDRAM* NVLink* CAPI*

* Upcoming

XPMEM*
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MVAPICH2 Software Family 
High-Performance Parallel Programming Libraries

MVAPICH2 Support for InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE

MVAPICH2-X Advanced MPI features, OSU INAM, PGAS (OpenSHMEM, UPC, UPC++, and CAF), and 
MPI+PGAS programming models with unified communication runtime

MVAPICH2-GDR Optimized MPI for clusters with NVIDIA GPUs

MVAPICH2-Virt High-performance and scalable MPI for hypervisor and container based HPC cloud

MVAPICH2-EA Energy aware and High-performance MPI

MVAPICH2-MIC Optimized MPI for clusters with Intel KNC

Microbenchmarks

OMB Microbenchmarks suite to evaluate MPI and PGAS (OpenSHMEM, UPC, and UPC++) 
libraries for CPUs and GPUs

Tools

OSU INAM Network monitoring, profiling, and analysis for clusters with MPI and scheduler 
integration

OEMT Utility to measure the energy consumption of MPI applications
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• Exploiting high concurrency and high bandwidth offered by modern 

architectures for MPI collectives design

– Point-to-point

– Direct Shared-memory 

– Data Partitioned Multi-Leader (DPML)

• Designing “zero-copy” and “contention-free” Collective Communication
– Contention-aware designs

– True zero-copy collectives

• Hardware offloading for better communication and computation overlap
– SHARP based offloaded collectives

– CORE-Direct based Non-blocking collectives

Agenda
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• Commonly used approach in implementing collectives

• Easy to express algorithms in message passing semantics

• A naïve Broadcast could be a series of “send” operations from 
root to all the non-root processes

• Relies on the implementation of point to point primitives

• Limited by the overheads exposed by these primitives

– Tag-matching

– Rendezvous hand-shake

Collective Designs based on Point-to-point Primitives



IXPUG ‘18 12Network Based Computing Laboratory

// root = 0
// msg-size > eager-size
if (rank == 0) {
for (i = 1 to n-1) {
MPI_Send(buf,...i,...);

}
} else {
MPI_Recv(buf,...0,...);

}

A Naïve Example of MPI_Bcast when using MPI_Send/MPI_Recv
MPI_Send MPI_Recv MPI_Recv

MPI_Send

RTS

CTS

Application skew

and library overhead

Fin

CTS

RTS

MPI_Send
.

.

.

Data transfer

Data transfer

• Overheads of 
handshake for 
each rendezvous 
message transfer

• Is there a better 
way?

Fin

Tag matching

Receiver wasting 
CPU cycles 
waiting for 
Sender’s request

rootMPI_Send

MPI_Recv MPI_Recv
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• A large shared-memory region
– Collective algorithms are realized by shared-

memory copies and synchronizations

– Good performance for small message via 
exploiting cache locality

– Avoid overheads associated with MPI point-to-
point implementations

• Requires one additional copy for each transfer

• Performance degradations for large message 
communication

– memcpy () is the dominant cost for large messages

• Most MPI libraries use some variant of Direct 
SHMEM collectives

Direct Shared Memory based Collectives

Reduction collectives perform even 
worse with SHMEM based design 
because of compute + memcpy
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Data Partitioning based Multi-Leader (DPML) Designs
• Hierarchical algorithms delegate lot of computation on the “node-leader”

– Leader process responsible for inter-node reductions while intra-node non-
root processes wait for the leader

• Existing designs for MPI_Allreduce do not take advantage of the vast 
parallelism available in modern multi-/many-core processors 

• DPML - a new solution for MPI_Allreduce 
• Takes advantage of the parallelism offered by

– Multi-/many-core architectures
– High throughput and high-end features offered by InfiniBand and Omni-Path 

• Multiple partitions of reduction vectors for arbitrary number of leaders
M. Bayatpour, S. Chakraborty, H. Subramoni, X. Lu, and D. K. Panda, Scalable Reduction Collectives with Data Partitioning-based 
Multi-Leader Design, Supercomputing '17. 
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MVAPICH2
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Scalability of DPML Allreduce On Stampede2-KNL (10,240 Processes)
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Performance Benefits of DPML AllReduce on MiniAMR Kernel
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• For MiniAMR Application with 4096 

processes, DPML can reduce the latency 

by 2.4X on KNL + Omni-Path cluster
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by 1.5X
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• Exploiting high concurrency and high bandwidth offered by modern 
architectures for MPI collectives design

– Point-to-point

– Direct Shared-memory 

– Data Partitioned Multi-Leader (DPML)

• Designing “Zero-copy” and “contention-free” Collective Communication
– Contention-aware designs

– True zero-copy collectives

• Hardware offloading for better communication and computation overlap
– SHARP based offloaded collectives

– CORE-Direct based Non-blocking collectives

Agenda
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How Kernel-assisted “Zero-copy” works?

Kernel

MPI Sender MPI Receiver

Send 
Buffer

Recv
Buffer

Shared Memory

Kernel

MPI Sender MPI Receiver

Send 
Buffer

Recv
Buffer

Shared Memory – SHMEM
Requires two copies

No system call overhead
Better for Small Messages

Kernel-Assisted Copy 
Requires single copy
System call overhead

Better for Large Messages
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A Variety of Available “Zero”-Copy Mechanisms
LiMIC KNEM CMA XPMEM

Permission Check Not Supported Supported Supported Supported

Availability Kernel Module Kernel Module Included in Linux 3.2+ Kernel Module

memcpy() invoked at Kernel-space Kernel-space Kernel-space User-space

memcpy() granularity Page size Page size Page size Any size

LiMIC KNEM CMA XPMEM
MVAPICH2 √ x √ √ (upcoming release)

OpenMPI 2.1.0 x √ √ √

Intel MPI 2017 x x √ x

Cray MPI x x √ √

MPI Library Support

Cross Memory Attach(CMA) is widely supported kernel-assisted mechanism
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• Direct algorithm designs based on kernel-
assisted zero-copy mechanism

– “Map” application buffer pages inside kernel

– Issue “Put” or “Get” operations directly on the 
application buffers

• Good performance for large messages
– Avoid unnecessary copy overheads of SHMEM

• Performance depends on the communication 
pattern of the collective primitive

• Does not offer “zero-copy” for Reduction 
Collectives 

Direct Kernel-assisted (CMA-based) Collectives

What about contention?
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Impact of Collective Communication Pattern on CMA Collectives
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Contention-aware CMA Collective
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• Up to 5x and 2x improvement for MPI_Scatter and MPI_Bcast on KNL
• For Bcast, improvements obtained for large messages only (p-1 copies with CMA, p copies with 

Shared memory)
• AlltoAll Large message performance bound by system bandwidth (5%-20% improvement)
• Fallback to SHMEM for small messages

~ 5x

better

S. Chakraborty, H. Subramoni, and D. K. Panda, Contention Aware Kernel-Assisted MPI Collectives for Multi/Many-core Systems, IEEE 
Cluster ’17, BEST Paper Finalist
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Multi-Node Scalability Using Two-Level Algorithms
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• Significantly faster intra-node communication
• New two-level collective designs can be 

composed
• 4x-17x improvement in 8 node Scatter and 

Gather compared to default MVAPICH2

~ 2.5x 
Better

~ 3.2x
Better

~ 4x
Better

~ 17x
Better

Can we have zero-copy “Reduction” 
collectives with this approach? 
Do you see the problem here???

1. Contention “avoidance” –
Not removal

2. Reduction requires extra 
copies



IXPUG ‘18 25Network Based Computing Laboratory

• Offload Reduction computation and communication to peer MPI ranks
– Every Peer has direct “load/store” access to other peer’s buffers

– Multiple pseudo roots independently carry-out reductions for intra-and inter-node

– Directly put reduced data into root’s receive buffer

• True “Zero-copy” design for Allreduce and Reduce
– No copies require during the entire duration of Reduction operation

– Scalable to multiple nodes

• Zero contention overheads as memory copies happen in “user-space”

Shared Address Space (XPMEM-based) Collectives

J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. Panda, Designing Efficient Shared Address Space Reduction Collectives for Multi-/Many-cores, 
International Parallel & Distributed Processing Symposium (IPDPS '18), May 2018.
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Shared Address Space (XPMEM)-based Collectives Design
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• “Shared Address Space”-based true zero-copy Reduction collective designs in MVAPICH2

• Offloaded computation/communication to peers ranks in reduction collective operation

• Up to 4X improvement for 4MB Reduce and up to 1.8X improvement for 4M AllReduce

1.8X
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50%

mailto:panda@cse.ohio-state.edu
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Application-Level Benefits of XPMEM-Based Collectives

MiniAMR (Broadwell, ppn=16) 

• Up to 20% benefits over IMPI for CNTK DNN training using AllReduce
• Up to 27% benefits over IMPI and up to 15% improvement over MVAPICH2 for 

MiniAMR application kernel
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• Exploiting high concurrency and high bandwidth offered by modern 
architectures for MPI collectives design

– Point-to-point

– Direct Shared-memory 

– Data Partitioned Multi-Leader (DPML)

• Designing “zero-copy” and “contention-free” Collective Communication
– Contention-aware designs

– True zero-copy collectives

• Hardware offloading for better communication and computation overlap
– SHARP based offloaded collectives

– CORE-Direct based Non-blocking collectives

Agenda
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• Application processes schedule collective operation

• Check periodically if operation is complete

• Overlap of computation and communication => Better Performance

• Catch: Who will progress communication 

Concept of Non-blocking Collectives
Application

Process

Application

Process

Application

Process

Application

Process
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Communication

Communication

Support Entity

Communication

Support Entity

Communication

Support Entity

Communication

Support Entity

Schedule

Operation

Schedule

Operation

Schedule

Operation

Schedule

Operation

Check if

Complete

Check if

Complete

Check if

Complete

Check if

Complete

Check if

Complete

Check if

Complete

Check if

Complete

Check if

Complete
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§ Management and execution of MPI operations in the 
network by using SHArP
§ Manipulation of data while it is being transferred in the switch 

network

§ SHArP provides an abstraction to realize the reduction 
operation
§ Defines Aggregation Nodes (AN), Aggregation Tree, and 

Aggregation Groups

§ AN logic is implemented as an InfiniBand Target Channel 
Adapter (TCA) integrated into the switch ASIC *

§ Uses RC for communication between ANs and between AN and 
hosts in the Aggregation Tree * 

Offloading with Scalable Hierarchical Aggregation Protocol (SHArP)

Physical Network Topology*

Logical SHArP Tree** Bloch et al. Scalable Hierarchical Aggregation Protocol (SHArP): A Hardware Architecture for Efficient Data Reduction

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
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M. Bayatpour, S. Chakraborty, H. Subramoni, X. Lu, and D. K. Panda, Scalable Reduction Collectives with Data Partitioning-based Multi-

Leader Design, SuperComputing '17. 
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12%
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Performance of NUMA-aware SHArP Design on XEON + IB Cluster

• As the message size decreases, the benefits of using Socket-based design increases

• NUMA-aware design can reduce the latency by up to 23% for DDOT phase of HPCG 

and up to 40% for micro-benchmarks

OSU Micro Benchmark (16 Nodes, 28 PPN) HPCG  (16 nodes, 28 PPN)

23%

40%
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SHArP based Non-Blocking Allreduce in MVAPICH2
MPI_Iallreduce Benchmark

2.3x

*PPN: Processes Per Node 

• Complete offload of Allreduce collective operation to “Switch”

o higher overlap of communication and computation

Available since MVAPICH2 2.3a
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• Mellanox CORE-Direct technology allows for offloading the 

collective communication to the network adapter

• MVAPICH2 supports CORE-Direct based offloading of non-

blocking collectives

– Covers all the non-blocking collectives

– Enabled by configure and runtime parameters

• CORE-Direct based MPI_Ibcast design improves the 

performance of High Performance Linpack (HPL) benchmark

NIC offload based Non-blocking Collectives using CORE-Direct 

Available since MVAPICH2-X 2.2a
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Co-designing HPL with Core-Direct and Performance Benefits
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HPL Performance Comparison with 512 Processes 
HPL-Offload consistently offers higher throughput than HPL-1ring and HPL-
Host. Improves peak throughput by up to 4.5 % for large problem sizes
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HPL-Offload HPL-1ring HPL-Host

HPL-Offload surpasses the peak throughput of HPL-1ring with 
significantly smaller problem sizes and run-times! 

K. Kandalla, H. Subramoni, J. Vienne, S. Pai Raikar, K. Tomko, S. Sur, and D K Panda,
Designing Non-blocking Broadcast with Collective Offload on InfiniBand Clusters: A Case Study with HPL, (HOTI 2011)
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• Many-core nodes will be the foundation blocks for emerging Exascale systems

• Communication mechanisms and runtimes need to be re-designed to take 
advantage of the high concurrency offered by manycores

• Presented a set of novel designs for collective communication primitives in 
MPI that address several challenges

• Demonstrated the performance benefits of our proposed designs under a 
variety of multi-/many-cores and high-speed networks

• Some of these designs are already available in MVAPICH2 libraries 

• The new designs will be available in upcoming MVAPICH2 libraries

Concluding Remarks
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Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

hashmi.29@osu.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
mailto:Hashmi.29osu.edu@

