
Machine-agnostic and Communication-aware

Designs for MPI on Emerging Architectures

Jahanzeb Maqbool Hashmi, Shulei Xu, Bharath Ramesh, Mohammadreza

Bayatpour, Hari Subramoni, and Dhabaleswar K. (DK) Panda

{hashmi.29, xu.2452, ramesh.113, bayatpour.1, subramoni.1, panda.2}@osu.edu

Department of Computer Science and Engineering

The Ohio State University, Columbus, USA

IPDPS’20

2Network Based Computing Laboratory

Distributed Deep
Learning

Genome
Sequencing

Medical Imaging Galaxy Formation

Diversity in HPC Applications and Architectures

3Network Based Computing Laboratory

Parallel Programming Models

P1 P2 P3

Shared Memory

P1 P2 P3

Memory Memory Memory

P1 P2 P3

Memory Memory Memory

Shared Memory Model

SHMEM, DSM

Distributed Memory Model

MPI (Message Passing Interface)

Partitioned Global Address Space (PGAS)

OpenSHMEM, UPC, UPC++, CAF …

• Programming models provide abstract machine models

• Models can be mapped on different types of systems

– e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

• MPI is the de-facto programming model for writing parallel applications

• MPI offers various communication primitives and data layouts

– Point-to-point, Collectives, Remote Memory Access

– Derived Datatypes

Logical shared memory

4Network Based Computing Laboratory

Motivating Examples

Latency test with various Rank-to-core placements

with small (left) and large (right) messages

AMD EPYC 7551 Architecture

MPI Mappings on MiniGhost (Azure-HB)MPI Mappings on MiniAMR (Azure-HB)

• Experiment

– Run osu_latency benchmark on

two AMD EPYC systems (e.g.,

Azure-HB VM, and native)

• Three observations

– MPI mappings perform differently

on native vs. VM systems

– The mapping that works for one

application, need not work well

for another application

– Even on same architecture,

different mappings exhibit

different performance

• There is a need for adaptive

MPI runtime

5Network Based Computing Laboratory

Research Challenges

• Challenges due to diverse architectures
• Multi-cores, Many-cores with SMT

• Deep memory hierarchies (e.g., NUMA levels)

• HPC virtual machines configurations (e.g., Azure)

• Challenges due to dynamic application communication patterns
• Irregular (Graphs) vs. Regular (Near-neighbor, Halo-exchange)

• Research Questions

• Can we design adaptive MPI process mappings that work with any communication patterns

and underlying hardware?

• How can we design architecture and communication-pattern aware MPI runtime without

requiring application changes?

• Proposed Solution

• Architecture-agnostic and machine-aware adaptive MPI runtime

• Construct hardware topologies and application communication graphs

• Design efficient and adaptive MPI rank-to-core mappings

6Network Based Computing Laboratory

Proposed Design for Constructing Machine Topologies

Venus NUMA-NUMA Bandwidth

Azure-HB NUMA-NUMA Bandwidth

• Problem with state-of-the-art

– Topology detection rely on static

approaches e.g., hwloc

– Do not work well with complex

architecture e.g., Azure VM

• Proposed approach:

– Use online measurements to construct

physical to virtual resource graph

• Use MCTOP[2] for low-level (e.g.,

cache-line level) benchmarking

• Works regardless of the native and

VM systems

[2] “Abstracting Multi-Core Topologies with MCTOP”, Georgios et al. EuroSys’17

7Network Based Computing Laboratory

Proposed Efficient MPI Rank to Core Mappings

Communication Pattern (AMG) Communication Pattern (NAS_MG) Communication Pattern (MiniAMR)

• Efficient virtual to physical resource mapping algorithm

– Step 1: Construct topology graph (G) using MCTOP

– Step 2: Adaptively generate communication graph (G’) using MPI_T interception (on-the-fly)

– Step 3: Greedy style algorithms to map high-cost edges in G’ on to low-latency/high-bandwidth edges in G

8Network Based Computing Laboratory

Proposed MPI Rank Mapping Algorithms

• Basic Idea

– Find highest communication edges in the application

graph (G)

– Find lowest latency edges in hardware topology graph (G’)

– Construct a list of mappings from G to G’

9Network Based Computing Laboratory

0

0.5

1

1.5

2

2.5

8 16 32 60

Scatter Bunch

Spread NUMA

Proposed-Opt

0

500

1000

1500

2000

8 16 32

Scatter Bunch

Spread NUMA

Proposed-Opt

Application-level Benefits of the Proposed Designs

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Problem Size

NAS_CG (Class D) on Azure HB

2.5X

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

No. of Cores

MiniAMR on Azure HB

27%

• Up to 27% improvement for MiniAMR and 2.5X improvement for NAS_CG kernel when compared with static

MPI mapping policies in MVAPICH2

• For more detailed results, please refer to the paper

10Network Based Computing Laboratory

• Modern multi-/many-core architecture and applications are becoming more diverse

– HPC over cloud systems are adding more complexity

• Application communication patterns are dynamic

– Irregular vs. regular

• Existing MPI runtimes are rigid when it comes to mapping application threads to

hardware resources

– Mapping policies use static tools

– Unaware of the application’s communication and underlying hardware topologies

• Proposed novel hardware-agnostic and communication-aware MPI runtime to

efficiently map MPI ranks on to hardware resources transparent to the application

• Significant performance benefits on real HPC system and application kernels

• In future, we plan to extend these ideas to accelerators e.g., GPUs and large-scale

HPC clusters

Conclusion

