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Distributed Deep 
Learning

Genome 
Sequencing

Medical Imaging Galaxy Formation

Diversity in HPC Applications and Architectures
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Parallel Programming Models

P1 P2 P3

Shared Memory

P1 P2 P3

Memory Memory Memory
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Memory Memory Memory

Shared Memory Model

SHMEM, DSM

Distributed Memory Model 

MPI (Message Passing Interface)

Partitioned Global Address Space (PGAS)

OpenSHMEM, UPC, UPC++, CAF …

• Programming models provide abstract machine models

• Models can be mapped on different types of systems

– e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

• MPI is the de-facto programming model for writing parallel applications

• MPI offers various communication primitives and data layouts

– Point-to-point, Collectives, Remote Memory Access

– Derived Datatypes

Logical shared memory
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Motivating Examples

Latency test with various Rank-to-core placements 

with small (left) and large (right) messages

AMD EPYC 7551 Architecture

MPI Mappings on MiniGhost (Azure-HB)MPI Mappings on MiniAMR (Azure-HB)

• Experiment

– Run osu_latency benchmark on 

two AMD EPYC systems (e.g., 

Azure-HB VM, and native)

• Three observations

– MPI mappings perform differently 

on native vs. VM systems

– The mapping that works for one 

application, need not work well 

for another application

– Even on same architecture, 

different mappings exhibit 

different performance

• There is a need for adaptive 

MPI runtime
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Research Challenges 

• Challenges due to diverse architectures
• Multi-cores, Many-cores with SMT

• Deep memory hierarchies (e.g., NUMA levels)

• HPC virtual machines configurations (e.g., Azure)

• Challenges due to dynamic application communication patterns
• Irregular (Graphs)  vs. Regular (Near-neighbor, Halo-exchange)

• Research Questions

• Can we design adaptive MPI process mappings that work with any communication patterns 

and underlying hardware?

• How can we design architecture and communication-pattern aware MPI runtime without 

requiring application changes?

• Proposed Solution

• Architecture-agnostic and machine-aware adaptive MPI runtime

• Construct hardware topologies and application communication graphs

• Design efficient and adaptive MPI rank-to-core mappings
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Proposed Design for Constructing Machine Topologies

Venus NUMA-NUMA Bandwidth

Azure-HB NUMA-NUMA Bandwidth

• Problem with state-of-the-art

– Topology detection rely on static 

approaches e.g., hwloc

– Do not work well with complex 

architecture e.g., Azure VM

• Proposed approach:

– Use online measurements to construct 

physical to virtual resource graph

• Use MCTOP[2] for low-level (e.g., 

cache-line level) benchmarking 

• Works regardless of the native and 

VM systems

[2] “Abstracting Multi-Core Topologies with MCTOP”, Georgios et al. EuroSys’17
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Proposed Efficient MPI Rank to Core Mappings

Communication Pattern (AMG) Communication Pattern (NAS_MG) Communication Pattern (MiniAMR)

• Efficient virtual to physical resource mapping algorithm

– Step 1: Construct topology graph (G) using MCTOP

– Step 2: Adaptively generate communication graph (G’) using MPI_T interception (on-the-fly)

– Step 3: Greedy style algorithms to map high-cost edges in G’ on to low-latency/high-bandwidth edges in G
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Proposed MPI Rank Mapping Algorithms

• Basic Idea

– Find highest communication edges in the application 

graph (G)

– Find lowest latency edges in hardware topology graph (G’)

– Construct a list of mappings from G to G’
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Application-level Benefits of the Proposed Designs
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MiniAMR on Azure HB

27%

• Up to 27% improvement for MiniAMR and 2.5X improvement for NAS_CG kernel when compared with static 

MPI mapping policies in MVAPICH2 

• For more detailed results, please refer to the paper
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• Modern multi-/many-core architecture and applications are becoming more diverse

– HPC over cloud systems are adding more complexity 

• Application communication patterns are dynamic

– Irregular vs. regular

• Existing MPI runtimes are rigid when it comes to mapping application threads to 

hardware resources

– Mapping policies use static tools 

– Unaware of the application’s communication and underlying hardware topologies

• Proposed novel hardware-agnostic and communication-aware MPI runtime to 

efficiently map MPI ranks on to hardware resources transparent to the application

• Significant performance benefits on real HPC system and application kernels

• In future, we plan to extend these ideas to accelerators e.g., GPUs and large-scale 

HPC clusters

Conclusion


