
FALCON: Efficient Designs for Zero-copy MPI

Datatype Processing on Emerging Architectures

Jahanzeb Hashmi, Sourav Chakraborty, Mohammadreza Bayatpour,

Hari Subramoni, and DK Panda

{hashmi.29, chakraborty.52, bayatpour.1, subramoni.1, panda.2}@osu.edu

Network Based Computing Laboratory (NBCL)

The Ohio State University

IPDPS ‘19 2Network Based Computing Laboratory

• Introduction and Motivation

– Programming Models

– Derived Datatypes

• Existing Designs for Derived Datatypes

– Shared Memory based Packing/Unpacking

– Challenges and Limitations

• FALCON: Zero-copy based Derived Datatypes

– Basic Design and limitations

– Pipelined Zero-copy

– Memoization based Design

– Design Optimizations

• Results and Discussion

– Micro-benchmark Evaluation

– Application Kernels: WRF, MILC, NAS_MG

– Scalability Results: 3D-Stencil

• Conclusion and Future Impact

Outline

IPDPS ‘19 3Network Based Computing Laboratory

Parallel Programming Models Overview

P1 P2 P3

Shared Memory

P1 P2 P3

Memory Memory Memory

P1 P2 P3

Memory Memory Memory

Shared Memory Model

SHMEM, DSM

Distributed Memory Model

MPI (Message Passing Interface)

Partitioned Global Address Space (PGAS)

OpenSHMEM, UPC, UPC++, CAF …

• Programming models provide abstract machine models

• Models can be mapped on different types of systems

– e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

• Programming models offer various communication primitives

– Point-to-point (between pair of processes/threads)

– Remote Memory Access (directly access memory of another process)

– Collectives (group communication)

Logical shared memory

IPDPS ‘19 4Network Based Computing Laboratory

• Communication primitives

– Point-to-point

– Collectives

– Remote Memory Access

(RMA)

• Communication Protocols

– Eager

– Rendezvous

• MPI Datatypes

– Serialize arbitrary layouts

• Intrinsic types

– MPI_INT, MPI_DOUBLE, etc.

• Derived Datatypes

– Contiguous

– Non-contiguous (vector, structs,

indexed, etc.)

• Used by Scientific Applications

– MILC, WRF

– NAS Parallel Benchmarks (MG)

Communication and Data Layout in MPI

IPDPS ‘19 5Network Based Computing Laboratory

MPI Derived Datatypes

MPI_Type_contiguous

MPI_Type_vector

Nested Type Example

Vector Indexed

Contig Contig

Struct

Vector of Types

Halo Exchange Example

B.x

B.y

MPI_Type_contiguous (count=B.x, MPI_DOUBLE, …)

Courtesy: https://www.mcs.anl.gov/~thakur/sc16-mpi-tutorial/slides.pdf

MPI_Type_vector (count=B.y, blocklen=1, stride=B.x+2, …)

https://www.mcs.anl.gov/~thakur/sc16-mpi-tutorial/slides.pdf

IPDPS ‘19 6Network Based Computing Laboratory

Packing/Unpacking

Understanding Implementation Choices – An Example

Zero-Copy

Internet

IPDPS ‘19 7Network Based Computing Laboratory

• Two broad categories of optimizations

A. Faster Pack/Unpack

• Efficient packing [Gropp et al., Thakur et al.]

• GPU Accelerated pack/unpack [Chu et al.]

B. Layout parsing optimizations

• Flattening-on-the-fly algorithm [Träff et al.]

• Automatic type generation [Kjolstad et al.]

• This work asks fundamental question:

– “What if (A) and (B) are not required?”

• Fundamentally re-think design space

– No layout parsing overheads

– No packing/unpacking required

Standing on the shoulders of giants

Packing / Unpacking Cost

L
a

y
o

u
t
P

a
rs

in
g

 C
o

s
t

Default
A

BAB

Proposed

IPDPS ‘19 8Network Based Computing Laboratory

• Introduction and Motivation

– Programming Models

– Derived Datatypes

• Existing Designs for Derived Datatypes

– Shared Memory based Packing/Unpacking

– Challenges and Limitations

• FALCON: Zero-copy based Derived Datatypes

– Basic Design and limitations

– Pipelined Zero-copy

– Memoization based Design

– Design Optimizations

• Results and Discussion

– Micro-benchmark Evaluation

– Application Kernels: WRF, MILC, NAS_MG

– Scalability Results: 3D-Stencil

• Conclusion and Future Impact

Outline

IPDPS ‘19 9Network Based Computing Laboratory

Realizing Intra-node Communication in MPI

Shared Memory

Requires two copies
No system call overhead

Better for Small Messages

Kernel-assisted Copy (CMA)

System call overhead
single (a.k.a “zero”) copy

Better for Large Messages

Sender

Receiver

Shared MMAP

Region

map

pages

Kernel

address-space
Sender

Receiver

Sender

Address-space

Receiver

Address Space

sbuf

rbuf

Shared Address Space (XPMEM)

No system call overhead
User-space Zero-copy

Good for Small/Large Messages

LD/ST

Copy

IPDPS ‘19 10Network Based Computing Laboratory

copy

Existing Pipelined Packing/Unpacking based Design

Block 0

RTS
Idle

MPI_Pack()

CTS

Block 1

Block n

MPI_Unpack()

Block 0

Block 1

Block n

…
..

…
..

FIN

Unpacking

…
.

…
.

0x11f6000

0x11f7000

0x11f8000

…
.

…
.Shared Memory

Packing

0x1bc3000

0x1bc4000

0x1bc5000

ReceiverSender

copy

copy

…
..

Timeline View

ReceiverSender

System View

IPDPS ‘19 11Network Based Computing Laboratory

Limitations of Existing Pack/Unpack based Designs

0%

20%

40%

60%

80%

100%

WRF MILC NAS_MG

Copy Layout Translation• Layout Translation

– Flattening the layout into list of I/O

vectors elements

– Significant overhead for nested

(hierarchical) datatypes

– Applications can use any layout

• Pack/Unpack requires two copies

– 2X overhead for large messages!!

• Zero-copy datatype processing

– Can it be better than state-of-the-art? Cost breakdown of existing
Pack/Unpack designs on Broadwell

IPDPS ‘19 12Network Based Computing Laboratory

1. Can zero-copy based Datatype processing be a viable solution?

2. Can we quantify the associated benefits and overheads of zero-copy

based design?

3. Can novel designs be proposed to overcome the limitations of zero-

copy designs to achieve higher performance benefits?

4. What are the expected performance benefits for real world scientific

applications?

Broad Questions

IPDPS ‘19 13Network Based Computing Laboratory

FALCON — FAst and Low-overhead Zero-copy MPI

datatype processing COmmunication eNgine

IPDPS ‘19 14Network Based Computing Laboratory

• Introduction and Motivation

– Programming Models

– Derived Datatypes

• Existing Designs for Derived Datatypes

– Shared Memory based Packing/Unpacking

– Challenges and Limitations

• FALCON: Zero-copy based Derived Datatypes

– Basic Design and limitations

– Pipelined Zero-copy

– Memoization based Design

– Design Optimizations

• Results and Discussion

– Micro-benchmark Evaluation

– Application Kernels: WRF, MILC, NAS_MG

– Scalability Results: 3D-Stencil

• Conclusion and Future Impact

Outline

IPDPS ‘19 15Network Based Computing Laboratory

FALCON: Basic Zero-copy Design

ReceiverSender

RTS

FIN

T

L: {IOV0, IOV1, … IOVn}

Block 0

Block 1

Block n

…
..

Copy(IOV0)

Copy(IOV1)

Copy(IOVn)

T

• Sender and receiver translate local

layouts

• Sender appends IOV list to RTS

• Receiver extracts the sender’s IOVs

– Directly copy each IOV from sender’s

virtual address space using CMA or

XPMEM

– XPMEM offers user-space transfers

• Receiver sends a FIN packet

– Transfer complete

IPDPS ‘19 16Network Based Computing Laboratory

Limitations of Basic Zero-copy design

• Layout-translation is still required

• Layout-exchange

– Layouts are local to rank in MPI

– Sender has to send its layout to receiver

• Remote address translation for XPMEM

– XPMEM attach

• High fragmentation means large IOV lists

– RTS can exceed actual payload

• Combined overheads take significant time

– Up to 70% of total communication

• Overheads outweigh the benefits
The time for data copy has been reduced
but at additional cost are added.

0

60

120

180

SHM ZCPY

Copy Layout Translation

Layout Exchange Address Translation

SHM ZCPY SHM ZCPY

MILC WRF NAS_MG

L
a

te
n

c
y
 (

u
s
)

IPDPS ‘19 17Network Based Computing Laboratory

FALCON: Pipelined Zero-copy Design
ReceiverSender

RTS

FIN

T

Partial Send {IOV0, … IOVk}

T• Sender and receiver translate

local layouts

• Sender and Receiver perform

handshake

• Sender sends first k-IOVs

• Receiver copies k-blocks of data

• Sender posts next chunk of IOVs

– Overlapped with receiver’s copy

• Layout-exchange overhead

mitigated

– Other overheads still present

CTS

Block 0

Block 1

Block k

…

Partial Send {IOVk+i,..IOVn}

Block k+i

Block k+2

Block n

…

Batched Copy
(IOVk+i -> IOVn)

…
..

Overlap Batched Copy
(IOVk+i -> IOVn)

IPDPS ‘19 18Network Based Computing Laboratory

0

60

120

180

Copy Layout Translation

Layout Exchange Address Translation

MILC WRF NAS_MG

L
a

te
n

c
y
 (

u
s
)

Benefits of Pipelined Zero-copy Design

Pipelined Zero-copy reduced the layout exchange overhead by overlap and pipelining

• Reduced cost of layout exchange

• Layout translation overhead

• Address translation overhead

Pipelined Zero-copy

IPDPS ‘19 19Network Based Computing Laboratory

FALCON: Memoization based Zero-copy Design

• Exploit application’s layout re-usability

– Sender memoizes translated layouts (𝐿)

– Receiver memoizes exchanged layouts (𝐿′)

– Hash Table 𝐻 stores < 𝑘, 𝑣 > = < ℎ, 𝐿 >

• Avoids unnecessary layout exchange

– Sender sends computed hash value ℎ in RTS

– Receiver looks-up ℎ in Table (𝐻′)

• If Hash (ℎ) is found in (𝐻)

– Sender only sends computed hash ℎ

– Receiver copies sender’s data using found 𝐿′

• If Hash (ℎ) is not found

– Sender sends the hash ℎ and (𝐿)

– Receiver add ℎ and 𝐿 to (𝐻′)

– Receiver copies sender’s data using (𝐿)

ReceiverSender

FIN

Block 0

Block 1

…
.

Block n

Copy Remote

Blocks

Compute (ℎ) Send (𝒉)

Lookup (𝑯, ℎ)

IPDPS ‘19 20Network Based Computing Laboratory
S

H
M

B
a
s
ic

P
ip

e

M
e

m
o

0

60

120

180

S
H

M

B
a
s
ic

P
ip

e

M
e

m
o

Copy Layout Translation

Layout Exchange Address Translation

S
H

M

B
a
s
ic

P
ip

e

M
e

m
o

MILC WRF NAS_MG

L
a

te
n

c
y
 (

u
s
)

Benefits of Memoization based Zero-copy Design

Memoization based design additionally reduced the layout translation overhead

• Layout exchange overheads

• Layout translation overheads

• Address translation overhead

Memoization-based Zero-copy

IPDPS ‘19 21Network Based Computing Laboratory

FALCON: Design Optimizations

• Avoiding Remote Virtual Address Translation

– XPMEM attached segments are cached

– Future accesses re-use attached IOVs

– No costly registration/de-registration required

• Communication pattern as input to the Hash function

– Computing Hash on IOV list can be costly

– Request object has enough information to uniquely identify the layout

– <Datatype, Count, Destination Rank, Tag, Communicator>

• Re-using receiver side layouts

– Layout re-use is common at applications

– Cache translated IOVs at receiver as well

– Avoid local layout translation by receiver’s IOV

IPDPS ‘19 22Network Based Computing Laboratory

0

60

120

180

S
H

M

B
a
s
ic

P
ip

e

M
e

m
o

M
e

m
o

-O
p
t

Copy Layout Translation

Layout Exchange Address Translation

S
H

M

B
a
s
ic

P
ip

e

M
e

m
o

M
e

m
o

-O
p
t

S
H

M

B
a
s
ic

P
ip

e

M
e

m
o

M
e

m
o

-O
p
t

MILC WRF NAS_MG

L
a

te
n

c
y
 (

u
s
)

Impact of Optimized Memoization based Zero-copy Design

Optimized Memoization design removed all the overheads with zero-copy benefits

• Layout exchange overheads

• Layout translation overheads

• Address translation overheads

• No-overhead remaining

Optimized Memoization Design (Final)

IPDPS ‘19 23Network Based Computing Laboratory

• Introduction and Motivation

– Programming Models

– Derived Datatypes

• Existing Designs for Derived Datatypes

– Shared Memory based Packing/Unpacking

– Challenges and Limitations

• FALCON: Zero-copy based Derived Datatypes

– Basic Design and limitations

– Pipelined Zero-copy

– Memoization based Design

– Design Optimizations

• Results and Discussion

– Micro-benchmark Evaluation

– Application Kernels: WRF, MILC, NAS_MG

– Scalability Results: 3D-Stencil

• Conclusion and Future Impact

Outline

IPDPS ‘19 24Network Based Computing Laboratory

Overview of the MVAPICH2 Project

• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 3,000 organizations in 88 countries

– More than 540,000 (> 0.5 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (Nov ‘18 ranking)

• 3rd ranked 10,649,640-core cluster (Sunway TaihuLight) at NSC, Wuxi, China

• 14th, 556,104 cores (Oakforest-PACS) in Japan

• 17th, 367,024 cores (Stampede2) at TACC

• 27th, 241,108-core (Pleiades) at NASA and many others

– Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, and OpenHPC)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade

Partner in the upcoming TACC Frontera System

http://mvapich.cse.ohio-state.edu/

IPDPS ‘19 25Network Based Computing Laboratory

Specification Xeon Xeon Phi OpenPOWER

Processor Family Intel Broadwell Knights Landing IBM POWER8

Processor Model E5 2680v4 KNL 7250 PPC64LE

Clock Speed 2.4 GHz 1.4 GHz 3.4 GHz

No. of Sockets 2 1 2

Cores Per Socket 14 68 10

Threads Per Core 1 4 8

RAM (DDR) 128 GB 96 GB 256 GB

Interconnect IB-EDR (100G) IB-EDR (100G) IB-EDR (100G)

Performance Evaluation: Cluster Testbeds

• Due to time limitations, here we only show Broadwell and OpenPOWER results

– Please refer to the paper for more details on KNL results

Hardware Specification of Cluster Testbeds

IPDPS ‘19 26Network Based Computing Laboratory

0.01

1

100

10000

1
2
8

2
5
6

5
1
2

1
K

2
K

4
K

8
K

1
6
K

3
2
K

6
4
K

1
2
8

K

2
5
6

K

5
1
2

K

1
M

2
M

MV2X-2.3 MV2X-OPT

OpenMPI 4.0 IMPI 2018

IMPI 2019

MicroBenchmark Level Evaluation - Broadwell

• Optimized memoization-based design in MVAPICH2X-OPT shows significant benefits

• Up to 4.8X improved latency over Intel MPI 2019 and 19% improvement over Open MPI for

small IOVs.

0

400

800

1200

1600
1

2
8

2
5
6

5
1
2

1
K

2
K

4
K

8
K

1
6
K

3
2
K

6
4
K

1
2
8

K

2
5
6

K

5
1
2

K

1
M

2
M

MV2X-2.3 MV2X-OPT

OpenMPI 4.0 IMPI 2018

IMPI 2019

L
a

te
n

c
y
 (

μ
s
)

Size of Individual IOV (bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

Size of Individual IOV (bytes)

5X
7X

IPDPS ‘19 27Network Based Computing Laboratory

0.1

1

10

100

1000

256 512 1K 2K 4K 8K 16K

MV2X-2.3

MV2X-OPT

OpenMPI 4.0

IMPI 2018

IMPI 2019

MicroBenchmark Level Evaluation - Broadwell (Contd.)

• Significant improvement in bi-bandwidth as compared to other MPI libraries

• Up to 2.8X and 16X improved bandwidth over Open MPI and Intel MPI 2019 for 16KB IOVs

B
i-
B

a
n

d
w

id
th

 (
M

B
/s

)

Size of Individual IOV (bytes)

1

10

100

1000

10000

100000

32K 64K 128K 256K 512K 1M 2M

MV2X-2.3

MV2X-OPT

OpenMPI 4.0

IMPI 2018

IMPI 2019

Size of Individual IOV (bytes)

B
i-
B

a
n

d
w

id
th

 (
M

B
/s

)

High Fragmentation (Small IOV Sizes) Low Fragmentation (Large IOV Sizes)

16X
14X

IPDPS ‘19 28Network Based Computing Laboratory

Application Kernel Application Domain Datatype Layout

MILC_su3_zd
Quantum

Chromodynamics
Nested Vectors for 4D face exchanges

WRF_y_vec Atmospheric Science Nested Vectors and Subarrays

NAS_MG_z Fluid Dynamics Vectors and Nested vectors for 3D face exchanges

3D-Stencil
Stencil

Communication
7-point stencil using Subarray datatypes

Performance Evaluation: Application Kernels

[1] T. Schneider, R. Gerstenberger, and T. Hoefler. Micro-applications for Communication Data access Patterns and MPI datatypes. In European

MPI Users’ Group Meeting, pages 121–131. Springer, 2012.

Communication Kernels

• We used various application kernels e.g., MILC, WRF, and NAS from DDTBench[1].

• Derived datatype based communication kernels of these applications are used to measure

the communication latencies.

IPDPS ‘19 29Network Based Computing Laboratory

1

10

100

1000

10000

100000

1000000

10000000

A B C D E

MV2X-2.3 IMPI 2018

IMPI 2019 OpenMPI 4.0

MV2X-OPT

Application Kernels – MILC
E

x
e

c
u

ti
o

n
 T

im
e

 (
μ

s
)

Problem Size

• On Broadwell, for Problem-B (768-KB), up to 31% improvement over Open MPI, up to 11X

over MVAPICH2-X, and up to 3X over Spectrum MPI is observed

Grid Dimensions – A = (16, 16, 32, 32); B = (32, 32, 32, 32); C = (64, 64, 32, 32); D = (128, 128, 32, 32); E = (128,128,64,64)

1

10

100

1000

10000

100000

A B C D E

MV2X-2.3

Spectrum MPI

MV2X-OPT

E
x
e

c
u

ti
o

n
 T

im
e

 (
μ

s
)

Problem Size

Broadwell OpenPOWER

3X
11X

IPDPS ‘19 30Network Based Computing Laboratory

1

10

100

1000

10000

A B C D

MV2X-2.3 IMPI 2018

IMPI 2019 OpenMPI 4.0

MV2X-OPT

Application Kernels – WRF
E

x
e

c
u

ti
o

n
 T

im
e

 (
μ

s
)

Problem Size

• On OpenPOWER using Problem-D, up to 3.3X improvement over Spectrum MPI

• On Broadwell, up to 2.1X and 3X improved latency over MVAPICH2-X and Intel MPI 2019

Params (ims, ime, is, ie) – A = (4, 140, 8, 136); B = (4, 268, 264, 8); C = (4, 524, 8, 520); D = (4, 1036, 8, 1032)

1

10

100

1000

10000

A B C D

MV2X-2.3

Spectrum MPI

MV2X-OPT

E
x
e

c
u

ti
o

n
 T

im
e

 (
μ

s
)

Problem Size

Broadwell OpenPOWER

3X 3.3X

IPDPS ‘19 31Network Based Computing Laboratory

1

10

100

1000

10000

A B C D E

MV2X-2.3 IMPI 2018

IMPI 2019 OpenMPI 4.0

MV2X-OPT

Application Kernels – NAS_MG_z
E

x
e

c
u

ti
o

n
 T

im
e

 (
μ

s
)

Problem Size

• On Broadwell, up to 2.7X and 4.2X improvement over MVAPICH2-X and Intel MPI 2018

• Using Problem-E, On OpenPOWER up to 3.3X improvement over Spectrum MPI

Grid Dimensions – A = (258, 130, 130); B = (512, 258, 258); C = (768, 258, 258); D = (1024, 258, 258); E = (2048, 258, 258)

1

10

100

1000

10000

A B C D E

MV2X-2.3

Spectrum MPI

MV2X-OPT

E
x
e

c
u

ti
o

n
 T

im
e

 (
μ

s
)

Problem Size

Broadwell OpenPOWER

3.3X
2.7X

IPDPS ‘19 32Network Based Computing Laboratory

1

10

100

1000

10000

100000

2 4 8 16 28

MV2X-2.3 IMPI2018

IMPI2019 MV2X-OPT

Application Kernels – 3D-Stencil

E
x
e

c
u

ti
o

n
 T

im
e

 (
μ

s
)

No. of Cores

Broadwell

• 7 point stencil with subarray datatypes. Grid dimension = 5123

• On 28-cores, up to 5X and 2X improvement over MVAPICH2-X and Intel MPI, respectively

2X

IPDPS ‘19 33Network Based Computing Laboratory

• Introduction and Motivation

– Programming Models

– Derived Datatypes

• Existing Designs for Derived Datatypes

– Shared Memory based Packing/Unpacking

– Challenges and Limitations

• FALCON: Zero-copy based Derived Datatypes

– Basic Design and limitations

– Pipelined Zero-copy

– Memoization based Design

– Design Optimizations

• Results and Discussion

– Micro-benchmark Evaluation

– Application Kernels: WRF, MILC, NAS_MG

– Scalability Results: 3D-Stencil

• Conclusion and Future Impact

Outline

IPDPS ‘19 34Network Based Computing Laboratory

• Multi-/many-core architectures bring new challenges

– Fundamentally re-think MPI derived datatype designs

– Provided optimized designs to address the limitations of MPI derived datatypes

• Achieved significant improvements over state-of-the-art

– Micro-benchmarks and Scientific applications: MILC, WRF, NAS_MG, 3D-Stencil

• Future Impact on the HPC eco-system

– Designs geared towards next-generation many-cores in Exa-scale era

– Transparent De-coupling of application optimizations and data-movement

– Designs applicable to any MPI implementations

– Application developers need not worry about Packing/Unpacking of data

Conclusion and Future Impact

IPDPS ‘19 35Network Based Computing Laboratory

Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

hashmi.29@osu.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
mailto:Hashmi.29osu.edu@

IPDPS ‘19 36Network Based Computing Laboratory

Proposed Enhancements to MPI Semantics

• Datatype semantics are process local

– No knowledge of each other’s layout

• Collective datatype creation routines

– Global monotonically increasing handles

– Unique values across all ranks

– No need to exchange layouts

IPDPS ‘19 37Network Based Computing Laboratory

• XPMEM (https://gitlab.com/hjelmn/xpmem) --- “Cross-partition Memory”

– Mechanisms for a process to “attach” to the virtual memory segment of a remote process

– Consists of a user-space API and a kernel module

• The sender process calls “xpmem_make()” to create a shared segment

– Segment information is then shared with the receiver

• The receiver process calls “xpmem_get()” followed by “xpmem_attach()”

• The receiver process can directly read/write on the remote process’ memory

Shared Address-space based Communication

Direct LD/ST

Sender’s

Address-space

Receiver’s

Address Space

Create Shared

address-space

segment

Sender’s

Address-space

Receiver’s

Address Space

xpmem_make()

xpmem_get()

xpmem_attach()

https://gitlab.com/hjelmn/xpmem

IPDPS ‘19 38Network Based Computing Laboratory

Quantifying the Registration Overheads of XPMEM

0%

20%

40%

60%

80%

100%

120%

4
K

1
6

K

6
4

K

2
5

6
K

xpmem_detach memcpy xpmem_attach xpmem_get

4
K

1
6

K

6
4

K

2
5

6
K

4
K

1
6

K

6
4

K

2
5

6
K

4
K

1
6

K

6
4

K

2
5

6
K

2-ppn 4-ppn 8-ppn 16-ppn• XPMEM based one-to-all latency

benchmark

– Mimics rooted collectives

• A process needs to attach to remote

process before memcpy

• Up to 65% time spent in XPMEM

registration for short message (4K)

• Increasing PPN increases the cost of

xpmem_get()operation

– Lock contention

– Pronounced at small messages

Relative costs of XPMEM API functions for
different PPN using one-to-all communication
benchmark on a single dual-socket Broadwell
node with 14 cores.

IPDPS ‘19 39Network Based Computing Laboratory

Registration Cache for XPMEM based Communication

• Per-rank AVL tree maintains remote attached pages

• Lazy memory de-registration principle

– Detach pages only in MPI_Finalize() or when

capacity-miss occurs (FIFO)

– MPI operations using same buffer do not incur

XPMEM registration overheads

• Multiple calls to malloc/free on the remote buffers lead to

invalid mappings

– Linux memory allocator maintains memory pools

– Access to attached buffer which has been freed on

remote rank, is considered invalid

• Interception of malloc/free calls to invalidate remote

mappings

A high-level flow of the proposed

Dynamic Registration Cache

IPDPS ‘19 40Network Based Computing Laboratory

0

100

200

300

400

500

2 4 8 16

La
te

n
cy

 (
u

s)

Concurrent Readers

XPMEM-NoCache
XPMEM-Cache

1

10

100

1000

10000

16K 64K 256K 1M 4M

La
te

n
cy

 (
u

s)

Message Size (bytes)

XPMEM-NoCache
XPMEM-Cache

Impact of Registration Cache on the Performance of XPMEM

based Point-to-point Communication

• Registration cache mitigates the overhead of XPMEM registration of remote memory segments

– At first miss, remote pages are attached and cached

• Look-up in registration cache cost O(log n) time due to AVL tree based design

• Benefits are more pronounced at small to medium message size

4.2X

0

2

4

6

8

10

2 4 8 16

La
te

n
cy

 (
u

s)
Concurrent Readers

XPMEM-NoCache
XPMEM-Cache

Two-process latency
at varying messages

Multi-process latency

at 16KB message

Multi-process latency

at 1MB message

5.7X

5.2X4.3X

IPDPS ‘19 41Network Based Computing Laboratory

Naïve Pack/Unpack Design using Shared Memory

Receiver’s MemorySender’s Memory

Unpacking

Receiver’s TimelineSender’s Timeline

RTS

Single IOV

(packed)

Idle

MPI_Pack()

MPI_Unpack()

Idle

FIN

…
.

…
.

0x11f6000

0x11f7000

0x11f8000

…
.

…
.Shared Memory

Packing

0x1bc3000

0x1bc4000

0x1bc5000

IPDPS ‘19 42Network Based Computing Laboratory

Memoization-based Zero-copy Design – I

IPDPS ‘19 43Network Based Computing Laboratory

Memoization-based Zero-copy Design – II

IPDPS ‘19 44Network Based Computing Laboratory

Impact of Datatype Fragmentation on Basic Zero-copy

• The lines represent total size of the communication buffer ranging from 4-KB to 4-MB.

• Higher fragmentation leads to significant degradation while increasing IOV size helps

1

10

100

1000

10000

100000

1000000

4 16 64 256 1K 4K

4K 16K 64K

256K 1M 4M

L
a

te
n

c
y
 (

μ
s
)

Size of Individual IOV (bytes) Size of Individual IOV (bytes)

0.1

1

10

100

1000

10000

100000

4 16 64 256 1K 4K

4K 16K 64K

256K 1M 4M

L
a

te
n

c
y
 (

μ
s
)

Basic ZCPY with CMA Basic ZCPY with XPMEM

