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Parallel Programming Models Overview

P1 P2 P3

Shared Memory

P1 P2 P3

Memory Memory Memory

P1 P2 P3

Memory Memory Memory

Shared Memory Model

SHMEM, DSM

Distributed Memory Model 

MPI (Message Passing Interface)

Partitioned Global Address Space (PGAS)

OpenSHMEM, UPC, UPC++, CAF …

• Programming models provide abstract machine models

• Models can be mapped on different types of systems

– e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

• Programming models offer various communication primitives

– Point-to-point (between pair of processes/threads)

– Remote Memory Access (directly access memory of another process)

– Collectives (group communication)

Logical shared memory
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• Communication primitives

– Point-to-point

– Collectives

– Remote Memory Access 

(RMA)

• Communication Protocols

– Eager 

– Rendezvous

• MPI Datatypes

– Serialize arbitrary layouts

• Intrinsic types

– MPI_INT, MPI_DOUBLE, etc.

• Derived Datatypes

– Contiguous 

– Non-contiguous (vector, structs, 

indexed, etc.)

• Used by Scientific Applications

– MILC, WRF

– NAS Parallel Benchmarks (MG)

Communication and Data Layout in MPI
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MPI Derived Datatypes 

MPI_Type_contiguous

MPI_Type_vector

Nested Type Example

Vector Indexed

Contig Contig

Struct

Vector of Types

Halo Exchange Example

B.x

B.y

MPI_Type_contiguous (count=B.x, MPI_DOUBLE, …)

Courtesy: https://www.mcs.anl.gov/~thakur/sc16-mpi-tutorial/slides.pdf

MPI_Type_vector (count=B.y, blocklen=1, stride=B.x+2, …)

https://www.mcs.anl.gov/~thakur/sc16-mpi-tutorial/slides.pdf
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Packing/Unpacking

Understanding Implementation Choices – An Example

Zero-Copy

Internet
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• Two broad categories of optimizations

A. Faster Pack/Unpack

• Efficient packing [Gropp et al., Thakur et al.]

• GPU Accelerated pack/unpack [Chu et al.]

B. Layout parsing optimizations

• Flattening-on-the-fly algorithm [Träff et al.]

• Automatic type generation [Kjolstad et al.]

• This work asks fundamental question:

– “What if (A) and (B) are not required?”

• Fundamentally re-think design space

– No layout parsing overheads

– No packing/unpacking required

Standing on the shoulders of giants

Packing / Unpacking Cost
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Realizing Intra-node Communication in MPI

Shared Memory

Requires two copies
No system call overhead

Better for Small Messages

Kernel-assisted Copy (CMA)

System call overhead
single (a.k.a “zero”) copy

Better for Large Messages

Sender

Receiver

Shared MMAP 

Region

map 

pages

Kernel 

address-space
Sender

Receiver

Sender

Address-space

Receiver

Address Space

sbuf

rbuf

Shared Address Space (XPMEM)

No system call overhead
User-space Zero-copy

Good for Small/Large Messages

LD/ST

Copy
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copy

Existing Pipelined Packing/Unpacking based Design

Block 0

RTS
Idle

MPI_Pack()

CTS

Block 1

Block n

MPI_Unpack()

Block 0

Block 1

Block n

…
..

…
..

FIN

Unpacking

…
.

…
.

0x11f6000

0x11f7000

0x11f8000

…
.

…
.Shared Memory

Packing

0x1bc3000

0x1bc4000

0x1bc5000

ReceiverSender

copy

copy

…
..

Timeline View

ReceiverSender

System View
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Limitations of Existing Pack/Unpack based Designs

0%

20%

40%

60%

80%

100%

WRF MILC NAS_MG

Copy Layout Translation• Layout Translation

– Flattening the layout into list of I/O 

vectors elements

– Significant overhead for nested 

(hierarchical) datatypes

– Applications can use any layout

• Pack/Unpack requires two copies

– 2X overhead for large messages!!

• Zero-copy datatype processing

– Can it be better than state-of-the-art? Cost breakdown of existing 
Pack/Unpack designs on Broadwell
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1. Can zero-copy based Datatype processing be a viable solution?

2. Can we quantify the associated benefits and overheads of zero-copy 

based design?

3. Can novel designs be proposed to overcome the limitations of zero-

copy designs to achieve higher performance benefits?

4. What are the expected performance benefits for real world scientific 

applications? 

Broad Questions
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FALCON — FAst and Low-overhead Zero-copy MPI 

datatype processing COmmunication eNgine
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FALCON: Basic Zero-copy Design

ReceiverSender

RTS

FIN

T

L: {IOV0, IOV1, … IOVn}

Block 0

Block 1

Block n

…
..

Copy(IOV0)

Copy(IOV1)

Copy(IOVn)

T

• Sender and receiver translate local 

layouts

• Sender appends IOV list to RTS

• Receiver extracts the sender’s IOVs 

– Directly copy each IOV from sender’s 

virtual address space using CMA or 

XPMEM 

– XPMEM offers user-space transfers

• Receiver sends a FIN packet

– Transfer complete
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Limitations of Basic Zero-copy design

• Layout-translation is still required

• Layout-exchange

– Layouts are local to rank in MPI

– Sender has to send its layout to receiver

• Remote address translation for XPMEM 

– XPMEM attach

• High fragmentation means large IOV lists 

– RTS can exceed actual payload

• Combined overheads take significant time

– Up to 70% of total communication

• Overheads outweigh the benefits
The time for data copy has been reduced 
but at additional cost are added.
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FALCON: Pipelined Zero-copy Design
ReceiverSender

RTS

FIN

T

Partial Send {IOV0, … IOVk}

T• Sender and receiver translate 

local layouts

• Sender and Receiver perform 

handshake

• Sender sends first k-IOVs

• Receiver copies k-blocks of data

• Sender posts next chunk of IOVs

– Overlapped with receiver’s copy

• Layout-exchange overhead 

mitigated

– Other overheads still present

CTS

Block 0

Block 1

Block k

…

Partial Send {IOVk+i,..IOVn}

Block k+i

Block k+2

Block n

…

Batched Copy
(IOVk+i -> IOVn)

…
..

Overlap Batched Copy
(IOVk+i -> IOVn)
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Benefits of Pipelined Zero-copy Design

Pipelined Zero-copy reduced the layout exchange overhead by overlap and pipelining

• Reduced cost of layout exchange

• Layout translation overhead

• Address translation overhead

Pipelined Zero-copy
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FALCON: Memoization based Zero-copy Design

• Exploit application’s layout re-usability

– Sender memoizes translated layouts (𝐿)

– Receiver memoizes exchanged layouts (𝐿′)

– Hash Table 𝐻 stores < 𝑘, 𝑣 > = < ℎ, 𝐿 >

• Avoids unnecessary layout exchange 

– Sender sends computed hash value ℎ in RTS

– Receiver looks-up ℎ in Table (𝐻′)

• If Hash (ℎ) is found in (𝐻)

– Sender only sends computed hash ℎ

– Receiver copies sender’s data using found 𝐿′

• If Hash (ℎ) is not found 

– Sender sends the hash ℎ and (𝐿)

– Receiver add ℎ and 𝐿 to (𝐻′)

– Receiver copies sender’s data using (𝐿)

ReceiverSender

FIN

Block 0

Block 1

…
.

Block n

Copy Remote 

Blocks 

Compute (ℎ) Send (𝒉)

Lookup (𝑯, ℎ)
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Benefits of Memoization based Zero-copy Design

Memoization based design additionally reduced the layout translation overhead

• Layout exchange overheads

• Layout translation overheads

• Address translation overhead

Memoization-based Zero-copy
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FALCON: Design Optimizations

• Avoiding Remote Virtual Address Translation

– XPMEM attached segments are cached

– Future accesses re-use attached IOVs

– No costly registration/de-registration required

• Communication pattern as input to the Hash function

– Computing Hash on IOV list can be costly

– Request object has enough information to uniquely identify the layout

– <Datatype, Count, Destination Rank, Tag, Communicator>

• Re-using receiver side layouts

– Layout re-use is common at applications

– Cache translated IOVs at receiver as well

– Avoid local layout translation by receiver’s IOV
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Impact of Optimized Memoization based Zero-copy Design

Optimized Memoization design removed all the overheads with zero-copy benefits

• Layout exchange overheads

• Layout translation overheads

• Address translation overheads

• No-overhead remaining

Optimized Memoization Design (Final)
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Overview of the MVAPICH2 Project

• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs  (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 3,000 organizations in 88 countries

– More than 540,000 (> 0.5 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (Nov ‘18 ranking)

• 3rd ranked 10,649,640-core cluster (Sunway TaihuLight) at  NSC, Wuxi, China

• 14th, 556,104 cores (Oakforest-PACS) in Japan

• 17th, 367,024 cores (Stampede2) at TACC

• 27th, 241,108-core (Pleiades) at NASA and many others

– Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, and OpenHPC)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade

Partner in the upcoming TACC Frontera System

http://mvapich.cse.ohio-state.edu/
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Specification Xeon Xeon Phi OpenPOWER

Processor Family Intel Broadwell Knights Landing IBM POWER8

Processor Model E5 2680v4 KNL 7250 PPC64LE

Clock Speed 2.4 GHz 1.4 GHz 3.4 GHz

No. of Sockets 2 1 2

Cores Per Socket 14 68 10

Threads Per Core 1 4 8

RAM (DDR) 128 GB 96 GB 256 GB

Interconnect IB-EDR (100G) IB-EDR (100G) IB-EDR (100G)

Performance Evaluation: Cluster Testbeds

• Due to time limitations, here we only show Broadwell and OpenPOWER results 

– Please refer to the paper for more details on KNL results

Hardware Specification of Cluster Testbeds



IPDPS ‘19 26Network Based Computing Laboratory

0.01

1

100

10000

1
2
8

2
5
6

5
1
2

1
K

2
K

4
K

8
K

1
6
K

3
2
K

6
4
K

1
2
8

K

2
5
6

K

5
1
2

K

1
M

2
M

MV2X-2.3 MV2X-OPT

OpenMPI 4.0 IMPI 2018

IMPI 2019

MicroBenchmark Level Evaluation - Broadwell

• Optimized memoization-based design in MVAPICH2X-OPT shows significant benefits

• Up to 4.8X improved latency over Intel MPI 2019 and 19% improvement over Open MPI for 

small IOVs.

0

400

800

1200

1600
1

2
8

2
5
6

5
1
2

1
K

2
K

4
K

8
K

1
6
K

3
2
K

6
4
K

1
2
8

K

2
5
6

K

5
1
2

K

1
M

2
M

MV2X-2.3 MV2X-OPT

OpenMPI 4.0 IMPI 2018

IMPI 2019

L
a

te
n

c
y
 (

μ
s
)

Size of Individual IOV (bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

Size of Individual IOV (bytes)

5X
7X



IPDPS ‘19 27Network Based Computing Laboratory

0.1

1

10

100

1000

256 512 1K 2K 4K 8K 16K

MV2X-2.3

MV2X-OPT

OpenMPI 4.0

IMPI 2018

IMPI 2019

MicroBenchmark Level Evaluation - Broadwell (Contd.)

• Significant improvement in bi-bandwidth as compared to other MPI libraries

• Up to 2.8X and 16X improved bandwidth over Open MPI and Intel MPI 2019 for 16KB IOVs

B
i-
B

a
n

d
w

id
th

 (
M

B
/s

)

Size of Individual IOV (bytes)

1

10

100

1000

10000

100000

32K 64K 128K 256K 512K 1M 2M

MV2X-2.3

MV2X-OPT

OpenMPI 4.0

IMPI 2018

IMPI 2019

Size of Individual IOV (bytes)

B
i-
B

a
n

d
w

id
th

 (
M

B
/s

)

High Fragmentation (Small IOV Sizes) Low Fragmentation (Large IOV Sizes)

16X
14X



IPDPS ‘19 28Network Based Computing Laboratory

Application Kernel Application Domain Datatype Layout

MILC_su3_zd
Quantum 

Chromodynamics
Nested Vectors for 4D face exchanges

WRF_y_vec Atmospheric Science Nested Vectors and Subarrays

NAS_MG_z Fluid Dynamics Vectors and Nested vectors for 3D face exchanges

3D-Stencil
Stencil 

Communication
7-point stencil using Subarray datatypes

Performance Evaluation: Application Kernels

[1] T. Schneider, R. Gerstenberger, and T. Hoefler. Micro-applications for Communication Data access Patterns and MPI datatypes. In European 

MPI Users’ Group  Meeting, pages 121–131. Springer, 2012.

Communication Kernels

• We used various application kernels e.g., MILC, WRF, and NAS from DDTBench[1].

• Derived datatype based communication kernels of these applications are used to measure 

the communication latencies.
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• Multi-/many-core architectures bring new challenges

– Fundamentally re-think MPI derived datatype designs 

– Provided optimized designs to address the limitations of MPI derived datatypes

• Achieved significant improvements over state-of-the-art

– Micro-benchmarks and Scientific applications: MILC, WRF, NAS_MG, 3D-Stencil

• Future Impact on the HPC eco-system

– Designs geared towards next-generation many-cores in Exa-scale era

– Transparent De-coupling of application optimizations and data-movement

– Designs applicable to any MPI implementations

– Application developers need not worry about Packing/Unpacking of data

Conclusion and Future Impact
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Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

hashmi.29@osu.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
mailto:Hashmi.29osu.edu@
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Proposed Enhancements to MPI Semantics

• Datatype semantics are process local

– No knowledge of each other’s layout

• Collective datatype creation routines

– Global monotonically increasing handles

– Unique values across all ranks

– No need to exchange layouts
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• XPMEM (https://gitlab.com/hjelmn/xpmem) --- “Cross-partition Memory” 

– Mechanisms for a process to “attach” to the virtual memory segment of a remote process

– Consists of a user-space API and a kernel module

• The sender process calls “xpmem_make()” to create a shared segment

– Segment information is then shared with the receiver

• The receiver process calls “xpmem_get()” followed by “xpmem_attach()”

• The receiver process can directly read/write on the remote process’ memory

Shared Address-space based Communication

Direct LD/ST

Sender’s

Address-space

Receiver’s

Address Space

Create Shared 

address-space 

segment

Sender’s

Address-space

Receiver’s

Address Space

xpmem_make()

xpmem_get()

xpmem_attach()

https://gitlab.com/hjelmn/xpmem
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Quantifying the Registration Overheads of XPMEM
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benchmark

– Mimics rooted collectives 

• A process needs to attach to remote 

process before memcpy

• Up to 65% time spent in XPMEM 

registration for short message (4K)

• Increasing PPN increases the cost of 

xpmem_get()operation

– Lock contention

– Pronounced at small messages

Relative costs of XPMEM API functions for 
different PPN using one-to-all communication 
benchmark on a single dual-socket Broadwell 
node with 14 cores.
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Registration Cache for XPMEM based Communication

• Per-rank AVL tree maintains remote attached pages

• Lazy memory de-registration principle

– Detach pages only in MPI_Finalize() or when 

capacity-miss occurs (FIFO)

– MPI operations using same buffer do not incur 

XPMEM registration overheads

• Multiple calls to malloc/free on the remote buffers lead to 

invalid mappings 

– Linux memory allocator maintains memory pools

– Access to attached buffer which has been freed on 

remote rank, is considered invalid

• Interception of malloc/free calls to invalidate remote 

mappings

A high-level flow of the proposed 

Dynamic Registration Cache
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Impact of Registration Cache on the Performance of XPMEM 

based Point-to-point Communication

• Registration cache mitigates the overhead of XPMEM registration of remote memory segments

– At first miss, remote pages are attached and cached

• Look-up in registration cache cost O(log n) time due to AVL tree based design

• Benefits are more pronounced at small to medium message size
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Naïve Pack/Unpack Design using Shared Memory

Receiver’s MemorySender’s Memory

Unpacking

Receiver’s TimelineSender’s Timeline

RTS

Single IOV 

(packed)

Idle

MPI_Pack()

MPI_Unpack()

Idle

FIN

…
.

…
.

0x11f6000

0x11f7000

0x11f8000

…
.

…
.Shared Memory

Packing

0x1bc3000

0x1bc4000

0x1bc5000
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Memoization-based Zero-copy Design – I
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Memoization-based Zero-copy Design – II



IPDPS ‘19 44Network Based Computing Laboratory

Impact of Datatype Fragmentation on Basic Zero-copy

• The lines represent total size of the communication buffer ranging from 4-KB to 4-MB.

• Higher fragmentation leads to significant degradation while increasing IOV size helps
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