
Kernel-assisted Communication Engine for
MPI on Emerging Manycore Processors

Jahanzeb M. Hashmi, Khaled Hamidouche, Hari

Subramoni and Dhabaleswar K. (DK) Panda

Presenter: Shashank Gugnani

Network-Based Computing Laboratory
Department of Computer Science and Engineering

The Ohio State University, Columbus, OH, USA

HiPC 2017 2Network Based Computing Laboratory

Agenda
• Introduction

– KNL Overview

– Background

– Motivation

• Problem Statement

• Contributions

• Design and Implementation

• Results and Discussion

• Conclusion and Future Work

HiPC 2017 3Network Based Computing Laboratory

Introduction

• Many-core processors such as Intel Knights Landing (KNL) are

on the rise in HPC industry

• Most of the MPI runtimes have not been using multi-

threading in the communication phases

– Resources such as cores are more valuable to application needs

• Many-cores such as KNL contain lot of slower SMT cores

– Can some of the cores be dedicated to derive communication?

• Intra-node MPI transfers mainly use memory copies

HiPC 2017 4Network Based Computing Laboratory

• Multi-threaded cores

– 272 threads (model 7250)

• Configurable mesh of cores

– AlltoAll, SNC, Quadrant

• High-bandwidth memory

– 16GB of MCDRAM

• Different MCDRAM configurations

– Flat, cache, and hybrid

• 512-bit wide vector registers

– AVX-512 extensions

Knights Landing Overview

2 VPU

Core

2 VPU

Core

L2 Cache

(1MB)

CHA

A single Tile of KNL

D M D D M

MM

Flat mode Cache mode Hybrid mode

Different Memory Modes of KNL

HiPC 2017 5Network Based Computing Laboratory

Motivation

• Due to dense multi-/many-cores, the

percentage of single-node jobs are

increasing

• New mechanisms for bringing

concurrency to communication are

needed that can achieve

– Portability

– Performance

– Programming Abstraction

• Efficiently utilize many-core resources

Total number of submitted jobs and percent of
single-node jobs among all the job over past four
years on XSEDE clusters. Small scale jobs are the
majority due to dense multi-/many-cores.

HiPC 2017 6Network Based Computing Laboratory

Background
• Intra-node MPI point-to-point communication

– Shared Memory for small messages

– Kernel-assisted zero-copy for large messages

• Popular designs include CMA, LiMIC, and KNEM

• Multi-threaded MPI Runtimes

– Endpoint Proposal in MPI

• Application needs to be redesigned (Less portability)

– Threaded-MPI, Balaji et al.

• Multiple threads to progress communication but application

needs to be redesigned

HiPC 2017 7Network Based Computing Laboratory

Outline

• Introduction

• Problem Statement

• Contributions

• Design and Implementation

• Results and Discussion

• Conclusion and Future Work

HiPC 2017 8Network Based Computing Laboratory

Problem Statements

Can we design an efficient mechanism to effectively

utilize KNL resources and bring concurrency to the

communication phases in MPI?

Can we design a communication engine that can

asynchronously derive the communication in MPI?

HiPC 2017 9Network Based Computing Laboratory

Outline

• Introduction

• Problem Statement

• Contributions

• Design and Implementation

• Results and Discussion

• Conclusion and Future Work

HiPC 2017 10Network Based Computing Laboratory

Contributions
• Propose a generic, multi-threaded, and kernel-assisted

on-load communication engine abstraction and its

implementation as a kernel module

• Implement MPI zero-copy transfers using proposed

engine based approach and compare it with the

prevalent designs in modern MPI libraries

• Demonstrate the impact and the benefits of our designs

on popular micro-benchmarks and applications

including HPCG, and CNTK Deep Learning framework

HiPC 2017 11Network Based Computing Laboratory

Outline

• Introduction

• Problem Statement

• Contributions

• Design and Implementation

• Results and Discussion

• Conclusion and Future Work

HiPC 2017 12Network Based Computing Laboratory

On-load Communication Engine: Abstraction
• Proposed on-load engine is envisioned as an entity that progresses the

communication tasks on behalf of the MPI processes

• A high level abstraction of different components of the engine include:
Context (default)

Worker pool

Worker 0

… … …

W
o

rk
 S

te
a

lin
g

Completed work Work queue
Dequeue()

Execute

k
th
re
a
d

Completed work Work queue
Dequeue()

Execute

k
th
re
a
d

Completed work Work queue
Dequeue()

Execute

k
th
re
a
d

Worker 1

Worker N

– Context: A high-level encapsulation of

engine resources

– Worker-Pool: A pool of worker threads

to carry-out the work

– Worker: A driver of the task execution

– Work-Item: A generic task containing

the definition of work

– Work-Queue: A doubly-ended (Deque)

to hold submitted tasks Proposed On-loading Engine Abstraction Overview

HiPC 2017 13Network Based Computing Laboratory

On-load Communication Engine: Kernel Module
• Kernel threads (kthreads) are used to realize “workers” abstraction

• Efficient kernel data-structures such as list_head, wait_queues,

task_struct, spin_locks etc. are used to implement different abstractions

• Kthreads are registered with Linux Waitqueues

– MPI process wakes-up kthreads when a new request is posted

– When task is progressed, kthread goes back to sleep

• Integration with MPI runtime

– MPI_Send invokes engine routine to get sender process info

– MPI_Recv, after matching, will pass sender’s info to engine via ioctl

– Locality-aware mapping of kthreads

HiPC 2017 14Network Based Computing Laboratory

Realizing MPI Zero-copy Operations using On-load
• Implemented MPI large-

message transfer using on-

load engine

– Multiple threads carry-

out the page-level copies

W0 W1 W2 …. Wn W0 W1 W2 …. Wn

Kmap

kunmap kunmap

Kmap

memcpy (ksrc, kdst, n)

kunmap kunmap

……

Kernal space

W0 W1 W0 W1

Sender buffer Receiver Buffer

memcopy (ksrc, kdst, n)

Sender
Pagelist

Receiver
Pagelist

• MPI_Recv invokes engine routines and posts the request

– Request contains sender’s buffer address, # of workers required, and a

function pointer *F() to the page-mapped memory copy implementation

• The requested workers execute *F() on a partition of user buffer

– Kmap() sender and receiver pages, do memcpy(), kunmap()

HiPC 2017 15Network Based Computing Laboratory

Overview of the MVAPICH2 Project
• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Started in 2001, First version available in 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 2,825 organizations in 85 countries

– More than 432,000 (> 0.4 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (Nov ‘17 ranking)

• 1st, 10,649,600-core (Sunway TaihuLight) at National Supercomputing Center in Wuxi, China

• 12th, 368,928 cores (Stampede2) at TACC

• 17th, 241,108-core (Pleiades) at NASA

• 48th, 76,032-core (Tsubame 2.5) at Tokyo Institute of Technology

– Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade

– System-X from Virginia Tech (3rd in Nov 2003, 2,200 processors, 12.25 TFlops) ->

– Sunway TaihuLight (1st in Jun’17, 10M cores, 100 PFlops)

http://mvapich.cse.ohio-state.edu/

HiPC 2017 16Network Based Computing Laboratory

MVAPICH2 Software Family
High-Performance Parallel Programming Libraries

MVAPICH2 Support for InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE

MVAPICH2-X Advanced MPI features, OSU INAM, PGAS (OpenSHMEM, UPC, UPC++, and CAF), and
MPI+PGAS programming models with unified communication runtime

MVAPICH2-GDR Optimized MPI for clusters with NVIDIA GPUs

MVAPICH2-Virt High-performance and scalable MPI for hypervisor and container based HPC cloud

MVAPICH2-EA Energy aware and High-performance MPI

MVAPICH2-MIC Optimized MPI for clusters with Intel KNC

Microbenchmarks

OMB Microbenchmarks suite to evaluate MPI and PGAS (OpenSHMEM, UPC, and UPC++)
libraries for CPUs and GPUs

Tools

OSU INAM Network monitoring, profiling, and analysis for clusters with MPI and scheduler
integration

OEMT Utility to measure the energy consumption of MPI applications

HiPC 2017 17Network Based Computing Laboratory

Outline

• Introduction

• Problem Statement

• Contributions

• Design and Implementation

• Results and Discussion

• Conclusion and Future Work

HiPC 2017 18Network Based Computing Laboratory

Evaluation Benchmarks and Testbed

• Benchmarks and applications

– OSU Microbenchmark v5.3.2

– High Performance Conjugate Gradient (HPCG) Kernel

– Microsoft CNTK Deep Learning Framework

• Intel Xeon Phi KNL Cluster @ CSE, OSU

– KNL 7250 (1.4GHz) with 16GB MCDRAM and 96GB DDR

• Comparative Designs

– MVAPICH2-X 2.3a with CMA and LiMIC support

– IntelMPI 2017 with CMA support enabled

HiPC 2017 19Network Based Computing Laboratory

Microbenchmark Evaluations (Single-pair Pt2Pt Test)

• Single-pair latency and bi-directional bandwidth test using 2 processes

• For large message latency, up to 34% improvement over existing designs

• For bandwidth, we observe up to 75% improvement from 1M to 64M message
ranges when using proposed designs

2-process Latency on MCDRAM 2-process Bi-Bandwidth on MCDRAM

HiPC 2017 20Network Based Computing Laboratory

Microbenchmark Evaluations (Multi-Pair Pt2Pt Test)

• Multi-pair latency and bandwidth test using 32 processes and 16 pairs

• Compared with MVAPICH2-CMA, MVAPICH2-LiMIC, and Intel-MPI 2017

• For large messages, up to 34% improvement over Intel-MPI, and 38% improvement
over MVAPICH2-CMA is observed

Multi-pair Latency on MCDRAM Multi-pair Bandwidth on MCDRAM

HiPC 2017 21Network Based Computing Laboratory

Application Evaluations (HPCG)

• Hybrid MPI+OpenMP evaluation with 8 OpenMP threads per MPI process.

• Main benefits achieved from DDOT, MG, and DDOT All Reduce phases of HPCG

• Overll execution time is reduced by 15% when using proposed designs

15%

HiPC 2017 22Network Based Computing Laboratory

Application Evaluations (CNTK)

• CNTK Multi-level Perceptron (MLP) feed-forward neural network using MNIST dataset

• Different variation of MPI+OpenMP threads are used

• Noticeable improvement in total training time of MLP is observed with proposed design

6%

HiPC 2017 23Network Based Computing Laboratory

Performance Results Summary

Portability

Performance

Overlap

CMA/LiMIC/KNEM

Multi-endpoint / Functional

Partitioning

Proposed on-load schemes

(Farther from center, is better)

Concurrency

HiPC 2017 24Network Based Computing Laboratory

Outline

• Introduction

• Problem Statement

• Contributions

• Design and Implementation

• Results and Discussion

• Conclusion and Future Work

HiPC 2017 25Network Based Computing Laboratory

Conclusion and Future Work
• Proposed and designed an on-load engine abstraction that achieves

concurrency, portability, and programmability

• Realized this abstraction as a multi-threaded kernel-assisted engine

• Compared our proposed designs with state-of-the-art intra-node
communication designs employed by modern MPI libraries

– 2.5X better latency performance than MVAPICH2-CMA and MVAPICH2-LiMIC

– 2X improvement over Intel MPI

• Observe up to 15% improvement in execution time of hybrid HPCG application

• Significant improvement over existing zero-copy based approaches for MLP
training using CNTK deep learning framework

• We plan to extend this abstraction for inter-node communication

• We also plan to show its applicability to other programming models e.g., PGAS

• Proposed Designs will be available in future releases of MVAPICH2

HiPC 2017 26Network Based Computing Laboratory

{hashmi.29, hamidouche.2, subramoni.1, panda.2}@osu.edu

Network-Based Computing Laboratory

http://nowlab.cse.ohio-state.edu/

MVAPICH Web Page

http://mvapich.cse.ohio-state.edu/

Thank You!

http://nowlab.cse.ohio-state.edu/

