
Designing High Performance Shared-Address-Space

and Adaptive Communication Middlewares for Next-

Generation HPC Systems

Jahanzeb Maqbool Hashmi

Department of Computer Science and Engineering

The Ohio State University, Columbus, USA

Committee Members:

Dhabaleswar K. Panda (Advisor)

Radu Teodorescu

Feng Qin

Hari Subramoni

Danielle O. Pyun

2Network Based Computing Laboratory

• Introduction

• Problem Statement

• Detailed Designs and Results

• Future Research Directions

• Broader Impact on HPC and AI Community

• Conclusion

Overview

3Network Based Computing Laboratory

• Growth of High Performance Computing

• Wide variety in workload

• HPC Ecosystem: Popular choice for HPC and AI

• Scalability, Modularity, and Upgradability

Distributed Deep
LearningGenome Sequencing Medical Imaging Galaxy Formation

Current and Next-Generation Applications

4Network Based Computing Laboratory

Trends in Modern HPC Architecture

5Network Based Computing Laboratory

Parallel Programming Models Overview

P1 P2 P3

Shared Memory

P1 P2 P3

Memory Memory Memory

P1 P2 P3

Memory Memory Memory

Shared Memory Model

SHMEM, DSM

Distributed Memory Model

MPI (Message Passing Interface)

Partitioned Global Address Space (PGAS)

OpenSHMEM, UPC, UPC++, CAF …

• Programming models provide abstract machine models

• Models can be mapped on different types of systems

– e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

• MPI is the de-facto programming model for writing parallel applications

• MPI offers various communication primitives and data layouts

– Point-to-point, Collectives, Remote Memory Access

– Derived Datatypes

Logical shared memory

6Network Based Computing Laboratory

Role of Communication Middleware

• MPI and PGAS libraries provide a wide range
of communication primitives

• Point-to-point, Collective, One-sided

• Blocking vs. Non-blocking

• Provide non-contiguous data-layout
representations

• MPI Derived datatypes

• Provide policies for resource mapping

• Process-to-core mappings

• Need to consider hardware capability as well
as application’s needs

Communication Middlewares

(MPI, PGAS, Tasks..)

Applications

(HPC, Deep Learning)

Emerging Hardware

(CPUs, Networks, GPUs, …)

7Network Based Computing Laboratory

Challenges and Requirements

• High core-density and less memory-per-core

• Emerging application requirements

• Machine/Deep Learning

• Scientific simulations

• Dynamic communication patterns

• Irregular (Graphs)

• Regular (Near-neighbor, Halo-exchange)

Design RequirementsResearch Challenges

• Efficient data-movement

• Reduced memory-footprint

• Adapt to dynamic applications and hardware

topologies

• Highly Concurrent and Asynchronous

communication

8Network Based Computing Laboratory

Broad Challenge

Designing High-performance, memory-efficient, and adaptive

communication middleware for Next-generation Multi-/many-

core HPC Systems

9Network Based Computing Laboratory

• Introduction

• Problem Statement

• Detailed Designs and Results

• Future Research Directions

• Broader Impact on HPC and AI Community

• Conclusion

Overview

10Network Based Computing Laboratory

• Can we alleviate the bottlenecks of existing MPI intra-node designs and provide

performance and memory efficient MPI primitives?

• What are the overheads associated with non-contiguous data-movement MPI

and how can we alleviate these bottlenecks?

• How can we design an adaptive MPI runtime that bridges the lack of association

between dynamic applications and diverse HPC systems?

• How can we leverage the high core-density of modern architectures to design

asynchronous on-loading engine for MPI to achieve concurrency and overlap?

• What is the impact on real-world applications and systems?

Problem Statement

11Network Based Computing Laboratory

Research Framework

Efficient Point-to-point Rendezvous

Communication Protocols

Applications

Programming
Models

Shared Address

Space and

Adaptive

Middleware

Modern HPC

Hardware

Multi-/Many-core CPU/GPU Systems High-speed Networks

Scientific Applications Deep Learning Frameworks

MVAPICH2: High-Performance Message Passing Library

Contention-free Truly Zero-copy MPI Collectives

Communication Library (SCCL)

Efficient Derived Datatypes

Processing Engine (FALCON)

Communication-aware Adaptive

MPI Runtime

Kernel-assisted Asynchronous

On-loading Engine

Xeon Phi
Open

POWER
EPYC

Azure

Cloud
InfiniBand Omni-Path

Message Passing Interface (MPI)
Partitioned Global Address Space

(OpenSHMEM, UPC++)

Deep Learning Communication

Middleware (Horovod over MPI)

MILC WRF
Mini*

Kernels
NAS OMB CNTK TensorFlow

NVIDIA

Volta

12Network Based Computing Laboratory

1. J. Hashmi, C. Chu, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. K. Panda, FALCON-X: Zero-copy MPI

Derived Datatype Processing on Modern CPU and GPU Architectures, accepted (with minor-revision) to the

Journal of Parallel and Distributed Computing, (JPDC ’20)

2. J. Hashmi, S. Xu, B. Ramesh, M. Bayatpour, H. Subramoni, and D. K. Panda, Machine-agnostic and

Communication-aware Designs for MPI on Emerging Architectures, in Proceeding of the 34th IEEE Intl’ Parallel

and Distributed Processing Symposium (IPDPS ’20)

3. J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. K. Panda, FALCON: Efficient Designs for

Zero-copy MPI Datatype Processing on Emerging Architectures, in Proceeding of the 33rd IEEE Intl’ Parallel

and Distributed Processing Symposium (IPDPS ’19), Best Paper Finalist

4. J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. K. Panda, Design and Characterization of

Shared Address Space MPI Collectives on Modern Architectures, in Proceeding of the 19th IEEE/ACM Intl’

Symposium on Cluster, Cloud, and Grid Computing (CCGrid ’19)

5. J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. K. Panda, Designing Efficient Shared Address

Space Reduction Collectives for Multi-/Many-cores, in Proceedings of the 32nd IEEE Intl’ Parallel and

Distributed Processing Symposium (IPDPS ’18)

6. J. Hashmi, M. Li, H. Subramoni, and D. K. Panda, Designing High-Performance and Scalable Collectives for the

Many-core Era: The MVAPICH2 Approach, Intel eXtreme Performance User’s Group (IXPUG ’18)

Primary Publications

13Network Based Computing Laboratory

7. J. Hashmi, K. Hamidouche, H. Subramoni, and D. K. Panda, Kernel-assisted Communication Engine for MPI on

Emerging Manycore Processors, in Proceedings of the 24th IEEE Intl’ Conference on High Performance

Computing, Data, and Analytics (HiPC ’17)

8. J. Hashmi, M. Li, H. Subramoni, and D. K. Panda, Exploiting and Evaluating OpenSHMEM on KNL Architecture,

in Proceedings of the Fourth Workshop on OpenSHMEM and Related Technologies (OpenSHMEM’17)

9. J. Hashmi, M. Li, H. Subramoni, and D. K. Panda, Performance of PGAS Models on KNL: A Comprehensive

Study with MAPICH2-X, at Intel eXtreme Performance User’s Group (IXPUG ’17)

10. J. Hashmi, K. Hamidouche, and D. K. Panda, Enabling Performance Efficient Runtime Support for Hybrid

MPI+UPC++ Programming Models, in Proceedings of the 18th IEEE Intl’ Conference on High Performance

Computing and Communications (HPCC ’16)

Primary Publications (Cont’d)

14Network Based Computing Laboratory

1. M. Bayatpour, J. Hashmi, S. Chakraborty, K. Kandadi Suresh, M. Ghazimirsaeed, H. Subramoni, and D. K. Panda,

Communication-Aware Hardware-Assisted MPI Overlap Engine, in Proceeding of the 2020 Intl’ Supercomputing

Conference (ISC ’20)

2. K. Kandadi Suresh, B. Ramesh, M. Ghazimirsaeed, M. Bayatpour, J. Hashmi, H. Subramoni, and D. K. Panda,

Performance Characterization of Network Mechanisms for Non-Contiguous Data Transfers in MPI, in Proceeding of

the Annual SNACS Workshop, held in conjunction with the 34th IEEE Intl’ Parallel and Distributed Processing

Symposium (SNACS @ IPDPS ’20)

3. C. Chu, J. Hashmi, K. Shafie Khorassani, H. Subramoni, and D. K. Panda, High-Performance Adaptive MPI

Derived Datatype Communication for Modern Multi-GPU Systems, in Proceedings of the 26th IEEE Intl’ Conference

on High Performance Computing, Data, Analytics, and Data Science (HiPC ’19)

4. X. Xu, J. Hashmi, S. Chakraborty, H. Subramoni, and D. K. Panda, Design and Evaluation of Shared Memory

Communication Benchmarks on Emerging Architectures using MVAPICH2, in Proceeding of the 3rd Annual IPDRM

Workshop, held in conjunction with Supercomputing 2019 (IPDRM @ SC ’19)

5. A. Ruhela, B. Ramesh, S. Chakraborty, H. Subramoni, J. Hashmi, and D. K. Panda, Leveraging Network-level

Parallelism with Multiple Process-Endpoints for MPI Broadcast, in Proceeding of the 3rd Annual IPDRM Workshop,

held in conjunction with Supercomputing 2019 (IPDRM @SC ’19)

Secondary Publications

15Network Based Computing Laboratory

6. M. Bayatpour, J. Hashmi, S. Chakraborty, H. Subramoni, and D. K. Panda, SALaR: Scalable and Adaptive Designs

for Large Message Reduction Collectives, in Proceedings of the 2018 IEEE Intl’ Conference on Cluster Computing

(CLUSTER ’18), Best Paper Award

7. S. Chakraborty, M. Bayatpour, J. Hashmi, H. Subramoni, and D. K. Panda, Cooperative Rendezvous Protocols for

Improved Performance and Overlap, in Proceedings of the 2018 Intl’ Conference for High Performance Computing,

Networking, Storage and Analysis (SC ’18), Best Student Paper Finalist

8. A. Awan, K. Hamidouche, J. Hashmi, and D. K. Panda, S-Caffe: Co-designing MPI Runtimes and Caffe for

Scalable Deep Learning on Modern GPU Clusters, in Proceedings of the 22nd ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (PPoPP ’17)

9. C. Chu, X. Lu, A. Awan, H. Subramoni, J. Hashmi, B. Elton, and D. K. Panda, Efficient and Scalable Multi-Source

Streaming Broadcast on GPU Clusters for Deep Learning, in Proceedings of the 2017 Intl’ Conference on Parallel

Processing (ICPP ’17)

Secondary Publications (Cont’d)

16Network Based Computing Laboratory

• Introduction

• Problem Statement

• Detailed Designs and Results

– Shared Address Space MPI Point-to-point Communication

– Shared Address Space MPI Collective Communication Library (SCCL)

– Efficient Zero-copy Derived Datatype Processing Engine (FALCON)

– Adaptive MPI Communication Runtime

– Kernel-assisted Communication On-loading

• Future Research Directions

• Broader Impact on HPC and AI Community

• Conclusion

Overview

17Network Based Computing Laboratory

Research Framework

Efficient Point-to-point Rendezvous

Communication Protocols

Applications

Programming
Models

Shared Address

Space and

Adaptive

Middleware

Modern HPC

Hardware

Multi-/Many-core CPU/GPU Systems High-speed Networks

Scientific Applications Deep Learning Frameworks

MVAPICH2: High-Performance Message Passing Library

Contention-free Truly Zero-copy MPI Collectives

Communication Library (SCCL)

Efficient Derived Datatypes

Processing Engine (FALCON)

Communication-aware Adaptive

MPI Runtime

Kernel-assisted Asynchronous

On-loading Engine

Xeon Phi
Open

POWER
EPYC

NVIDIA

Volta
InfiniBand Omni-Path

Message Passing Interface (MPI)
Partitioned Global Address Space

(OpenSHMEM, UPC++)

Deep Learning Communication

Middleware (Horovod over MPI)

MILC WRF
Mini*

Kernels
NAS OMB CNTK TensorFlow

Azure

Cloud

18Network Based Computing Laboratory

Challenges in Intra-node Point-to-point Communication in MPI

Shared Memory (POSIX)

Requires two copies
No system call overhead

Better for Small Messages

Kernel-mapping (CMA/LiMIC/KNEM)

System call overhead
Lack of Load/store access
single (a.k.a “zero”) copy

Better for Large Messages

Sender

Receiver

Shared MMAP

Region

map

pages

Kernel

address-space
Sender

Receiver

We require over-head free, user-space, load/store based inter-process
communication mechanism, also called “Shared Address Space” communication

19Network Based Computing Laboratory

Shared Address Space MPI Communication using XPMEM

Receiver

Address-space

Sender

Address Space

rbuf

sbuf

LD/ST

Copy

MPI Rendezvous Communication (RGET)

xpmem_get()

xpmem_attach()

Cross-partition Memory (XPMEM)

• Kernel Module with user-space API

• Allows a process to “attach” to the virtual memory

segment of a remote process

ReceiverSender

FIN

Memcpy()
Copy Remote

Data

RTS

xpmem_get

xpmem_attach

xpmem_detach

xpmem_make

MPI_Recv()MPI_Send()

20Network Based Computing Laboratory

Limitations of Shared Address Space Communication

0%

20%

40%

60%

80%

100%

120%

4
K

1
6

K

6
4

K

2
5

6
K

xpmem_detach memcpy xpmem_attach xpmem_get

4
K

1
6

K

6
4

K

2
5

6
K

4
K

1
6

K

6
4

K

2
5

6
K

4
K

1
6

K

6
4

K

2
5

6
K

2-ppn 4-ppn 8-ppn 16-ppn• Experiment:

– XPMEM based one-to-all latency benchmark

– All processes read from a root process’ buffer

• Key observation:

– Up to 65% time spent in XPMEM registration for

short message (4K)

– Lock contention with increasing PPN

– Vanilla shared address space design is

suboptimal for MPI communication

Relative costs of XPMEM API functions for different PPN using one-
to-all communication benchmark on a single dual-socket Broadwell

node with 14 cores.

21Network Based Computing Laboratory

Proposed Registration Cache for XPMEM based Communication

• Broad Idea:

– Memory de-registration is delayed

– Maintain a cache of remote attached pages

– Detach pages only in MPI_Finalize() or when

capacity-miss occurs (FIFO)

– MPI calls on the same buffers always hit!

• A new problem?

– Multiple calls to malloc/free on remote buffers

• Solution:

– Interception of malloc/free calls to invalidate

remote mappings

Designing Efficient Shared Address Space Reduction Collectives for Multi-/Many-cores

J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. K. Panda

32nd IEEE IPDPS ’18

0

100

200

300

400

500

600

4K 16K 64K 256K 1M 4M

MVAPICH2-SHM

MVAPICH2-CMA

MVAPICH2-XPM-OPT

L
a

te
n

c
y
 (

u
s
)

Message Size (bytes)

Two process osu_latency

23%

22Network Based Computing Laboratory

• Introduction

• Problem Statement

• Detailed Designs and Results

– Shared Address Space MPI Point-to-point Communication

– Shared Address Space MPI Collective Communication Library (SCCL)

– Efficient Zero-copy Derived Datatype Processing Engine (FALCON)

– Adaptive MPI Communication Runtime

– Kernel-assisted Communication On-loading

• Future Research Directions

• Broader Impact on HPC and AI Community

• Conclusion

Overview

23Network Based Computing Laboratory

Research Framework

Efficient Point-to-point Rendezvous

Communication Protocols

Applications

Programming
Models

Shared Address

Space and

Adaptive

Middleware

Modern HPC

Hardware

Multi-/Many-core CPU/GPU Systems High-speed Networks

Scientific Applications Deep Learning Frameworks

MVAPICH2: High-Performance Message Passing Library

Contention-free Truly Zero-copy MPI Collectives

Communication Library (SCCL)

Efficient Derived Datatypes

Processing Engine (FALCON)

Communication-aware Adaptive

MPI Runtime

Kernel-assisted Asynchronous

On-loading Engine

Xeon Phi
Open

POWER
EPYC

Azure

Cloud
InfiniBand Omni-Path

Message Passing Interface (MPI)
Partitioned Global Address Space

(OpenSHMEM, UPC++)

Deep Learning Communication

Middleware (Horovod over MPI)

MILC WRF
Mini*

Kernels
NAS OMB CNTK TensorFlow

NVIDIA

Volta

24Network Based Computing Laboratory

Problems with State-of-the-art Zero-copy Collectives

P0

P2

P3 P4

P1

[1] S. Chakraborty, H. Subramoni, and D. K. Panda, Contention Aware Kernel-Assisted MPI Collectives for Multi/Many-core Systems, IEEE Cluster ’17, Best Paper Finalist

• One-to-all or all-to-one patterns

• CMA Broadcast, CMA Scatter, etc.

• Kernel-level contention

• CMA relies on get_user_pages()

• Page table lock at target process

1

2

3

4

5

6

7

8

1

2

3

4

A B

+

temp

+

Process 0 Process 1

• No load/store access via CMA

• Remote data has to be brought to local

memory before operation

CMA read

Reduction ProblemContention Problem

25Network Based Computing Laboratory

Proposed Shared Address Space Collective Communication

Library (SCCL)

• Step-1:

– Ranks exchange buffer information

– Tuple of <vaddr, len, segid>

• Step-2:

– Peer ranks map remote memory segments

– Add entry to cache if not found

• Step-3:

– Intra-node barrier to enforce ordering

• Step-4:

– Plug our proposed XPMEM based collective

implementation routines e.g.,

– MV2_XPMEM_Direct_<collective-name>

– Implemented all MPI collectives

High-level Overview of XPMEM base Direct MPI

Collectives Implementation

26Network Based Computing Laboratory

Proposed Contention-free and Zero-copy MPI_Allreduce

D2

…

DN

D1

…

DN

D1

D2

…

DN

….

.

P1
P2 P3 PN

D1

D2

…

D1R’1

D2

DN

R’2

R’
N

Step-1: Parallel Intra-node Partitioned Reduce

…

…

…

D
N1

D
21

…R
11

D
N2

D
22

…R
12

D
N

M

D
2M

…R
1M

P11

P12

P1M

…

R
N1

D
21

…D
11

R
N2

D
22

…D
12

R
N

M

D
2M

…D
1M

PN1

PN2

PNM

…

Node-1

Node-2

Node-M

R
11

R
N1

R
N1

R
12

R
N2

R
1M

R
N

M

Step-2: Multi-root Inter-node Allreduce

…
DN

D1
…

DN

D1

D2

…

DN

…..

P1
P2 P3 PN

D1

D2

…

D1

D2

DN

D1 D1 D1

D2 D2

DNDNDN

R2D2

Step-3: Parallel Intra-node Partitioned Broadcast

Designing Efficient Shared Address Space Reduction Collectives for Multi-/Many-cores

J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. K. Panda

32nd IEEE IPDPS ’18

27Network Based Computing Laboratory

Performance of Contention-free Zero-copy Collectives

Benefits of “Contention-free” MPI_Scatter on OMB

1

10

100

1000

10000

100000

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

4
M

Intel MPI 2018

OpenMPI 3.0.1

MV2X (CMA Coll)

MV2X (Proposed)

L
a
te

n
c
y
 (

u
s
)

28X over CMA-
collectives

Message Size (bytes)

Design and Characterization of Shared Address Space MPI

Collectives on Modern Architectures

J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. K. Panda

19th IEEE CCGRID ’19

0

10

20

30

40

50

60

70

16 32 64 128 256

Ex
ec

u
ti

o
n

 T
im

e
(s

)

No. of Processes

Intel MPI

MVAPICH2

MVAPICH2-XPMEM

Benefits of “Truly Zero-copy Allreduce” on MiniAMR

13%

Designing Efficient Shared Address Space Reduction

Collectives for Multi-/Many-cores

J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. K. Panda

32nd IEEE IPDPS ’18

28Network Based Computing Laboratory

• Introduction

• Problem Statement

• Detailed Designs and Results

– Shared Address Space MPI Point-to-point Communication

– Shared Address Space MPI Collective Communication Library (SCCL)

– Efficient Zero-copy Derived Datatype Processing Engine (FALCON)

– Adaptive MPI Communication Runtime

– Kernel-assisted Communication On-loading

• Future Research Directions

• Broader Impact on HPC and AI Community

• Conclusion

Overview

29Network Based Computing Laboratory

Research Framework

Efficient Point-to-point Rendezvous

Communication Protocols

Applications

Programming
Models

Shared Address

Space and

Adaptive

Middleware

Modern HPC

Hardware

Multi-/Many-core CPU/GPU Systems High-speed Networks

Scientific Applications Deep Learning Frameworks

MVAPICH2: High-Performance Message Passing Library

Contention-free Truly Zero-copy MPI Collectives

Communication Library (SCCL)

Efficient Derived Datatypes

Processing Engine (FALCON)

Communication-aware Adaptive

MPI Runtime

Kernel-assisted Asynchronous

On-loading Engine

Xeon Phi
Open

POWER
EPYC

Azure

Cloud
InfiniBand Omni-Path

Message Passing Interface (MPI)
Partitioned Global Address Space

(OpenSHMEM, UPC++)

Deep Learning Communication

Middleware (Horovod over MPI)

MILC WRF
Mini*

Kernels
NAS OMB CNTK TensorFlow

NVIDIA

Volta

30Network Based Computing Laboratory

Limitations of Existing Pack/Unpack based Designs

0%

20%

40%

60%

80%

100%

WRF MILC NAS_MG

Copy Layout Translation• Design Challenges

– Flattening the layout into list of I/O

vectors (Layout Translation)

– Significantly slow for nested datatypes

– Pack/Unpack requires two copies

• 2X overhead for large messages!!

• Proposed Solution:

– FALCON — FAst and Low-overhead

Zero-copy MPI datatype processing

COmmunication eNgine

– Amortized layout translation

– Zero-copy non-contiguous data

movement
Cost breakdown of existing Pack/Unpack

designs on Broadwell

31Network Based Computing Laboratory

Proposed Designs: FALCON

ReceiverSender

RTS

FIN

T

L: {IOV0, IOV1, … IOVn}

Block 0

Block 1

Block n

…
..

Copy(IOV0)

Copy(IOV1)

Copy(IOVn)

T

ReceiverSender

FIN

Block 0

Block 1
…

.

Block n

Copy Remote

Blocks

Compute (ℎ)

Send (𝒉)

Lookup (𝑯′, ℎ)

Lookup (𝑯, ℎ)

Basic Zero-copy Memoization-based Zero-copy

• Avoiding Remote Virtual

Address Translation

– Attached segments are cached

• Communication pattern as input

to the Hash function

– Request object has enough

information

– <Datatype, Count, Destination

Rank, Tag, Communicator>

32Network Based Computing Laboratory

0

60

120

180

S
H

M

B
a
s
ic

P
ip

e

M
e

m
o

M
e

m
o

-O
p
t

Copy Layout Translation

Layout Exchange Address Translation

S
H

M

B
a
s
ic

P
ip

e

M
e

m
o

M
e

m
o

-O
p
t

S
H

M

B
a
s
ic

P
ip

e

M
e

m
o

M
e

m
o

-O
p
t

MILC WRF NAS_MG

L
a

te
n

c
y
 (

u
s
)

Impact of Optimized Memoization based Zero-copy Design

• Layout exchange overheads

• Layout translation overheads

• Address translation overheads

Optimized Memoization Design (Final)

No additional Overhead!!

FALCON: Efficient Designs for Zero-copy MPI Datatype Processing on Emerging Architectures

J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. K. Panda,

IEEE IPDPS ’19, Best Paper Finalist

33Network Based Computing Laboratory

1

10

100

1000

10000

100000

1000000

10000000
MV2X-2.3 IMPI 2018

IMPI 2019 OpenMPI 4.0

MV2X-OPT

Performance Results on Application Kernels (Broadwell)
E

x
e
c
u
ti
o
n
 T

im
e
 (

μ
s
)

Problem Size

• On MILC, for Problem-B (768-KB), up to 11X over IMPI 2019

• On Broadwell, up to 2.1X and 3X improved latency over MVAPICH2-X and Intel MPI 2019

MILC

11X

1

10

100

1000

10000

4,140,8,136 4,268,264,8 4,524,8,520 4,1036,8,1032

MV2X-2.3 IMPI 2018
IMPI 2019 OpenMPI 4.0
MV2X-OPT

E
x
e
c
u
ti
o
n
 T

im
e
 (

μ
s
)

Problem Size

WRF

3X

FALCON: Efficient Designs for Zero-copy MPI Datatype Processing on Emerging Architectures

J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. K. Panda,

IEEE IPDPS ’19, Best Paper Finalist

34Network Based Computing Laboratory

Extending FALCON for Dense Multi-GPU Systems (FALCON-X)

• Common issues in CUDA-aware MPI for Non-contiguous datatypes

• FALCON-X: Efficient MPI derived datatype for dense multi-GPU systems e.g., DGX-2

– Extends the ideas of FALCON for GPU systems using CUDA IPC

NAS_MG kernel on 2x Volta GPUs MILC kernel on 2x Volta GPUs Scaling 2D-stencil on DGX-2

FALCON-X: Zero-copy MPI Derived Datatype Processing on Modern CPU and GPU Architectures

J. Hashmi, C. Chu, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. K. Panda,

Journal of Parallel and Distributed Computing (JPDC ‘20)

35Network Based Computing Laboratory

• Introduction

• Problem Statement

• Detailed Designs and Results

– Shared Address Space MPI Point-to-point Communication

– Shared Address Space MPI Collective Communication Library (SCCL)

– Efficient Zero-copy Derived Datatype Processing Engine (FALCON)

– Adaptive MPI Communication Runtime

– Kernel-assisted Communication On-loading

• Future Research Directions

• Broader Impact on HPC and AI Community

• Conclusion

Overview

36Network Based Computing Laboratory

Research Framework

Efficient Point-to-point Rendezvous

Communication Protocols

Applications

Programming
Models

Shared Address

Space and

Adaptive

Middleware

Modern HPC

Hardware

Multi-/Many-core CPU/GPU Systems High-speed Networks

Scientific Applications Deep Learning Frameworks

MVAPICH2: High-Performance Message Passing Library

Contention-free Truly Zero-copy MPI Collectives

Communication Library (SCCL)

Efficient Derived Datatypes

Processing Engine (FALCON)

Communication-aware Adaptive

MPI Runtime

Kernel-assisted Asynchronous

On-loading Engine

Xeon Phi
Open

POWER
EPYC

Azure

Cloud
InfiniBand Omni-Path

Message Passing Interface (MPI)
Partitioned Global Address Space

(OpenSHMEM, UPC++)

Deep Learning Communication

Middleware (Horovod over MPI)

MILC WRF
Mini*

Kernels
NAS OMB CNTK TensorFlow

NVIDIA

Volta

37Network Based Computing Laboratory

Challenges with Diverse Architectures and Applications

Latency test with various Rank-to-core placements with

small (left) and large (right) messages

AMD EPYC 7551 Architecture

MPI Mappings on MiniGhost (Azure-HB)MPI Mappings on MiniAMR (Azure-HB)

38Network Based Computing Laboratory

Proposed Design for Constructing Machine Topologies

NUMA-NUMA Bandwidth (Native AMD EPYC) NUMA-NUMA Bandwidth (Azure AMD VM)

• Low-level benchmarking approach to construct physical to virtual resource graph

– Use MCTOP[2] for cache-line level measurements

– Works regardless of the native and VM systems

[2] “Abstracting Multi-Core Topologies with MCTOP”, Georgios et al. EuroSys’17

Generated Topology Graph

39Network Based Computing Laboratory

Proposed Efficient MPI Rank to Core Mappings

Communication Pattern (AMG) Communication Pattern (NAS_MG) Communication Pattern (MiniAMR)

• Efficient virtual to physical resource mapping algorithm

– Step 1: Construct topology graph (G) using MCTOP

– Step 2: Adaptively generate communication graph (G’) using MPI_T interception (on-the-fly)

– Step 3: Greedy style algorithms to map high-cost edges in G’ on to low-latency/high-bandwidth edges in G

40Network Based Computing Laboratory

0

0.5

1

1.5

2

2.5

8 16 32 60

Scatter Bunch

Spread NUMA

Proposed-Opt

0

500

1000

1500

2000

8 16 32

Scatter Bunch

Spread NUMA

Proposed-Opt

Application-level Benefits of Adaptive Designs

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Problem Size

NAS_CG (Class D) on Azure HB

2.5X

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

No. of Cores

MiniAMR on Azure HB

27%

Machine-agnostic and Communication-aware Designs for MPI on Emerging Architectures

J. Hashmi, S. Xu, B. Ramesh, M. Bayatpour, H. Subramoni, and D. K. Panda

34th IEEE IPDPS ’20

41Network Based Computing Laboratory

• Introduction

• Problem Statement

• Detailed Designs and Results

– Shared Address Space MPI Point-to-point Communication

– Shared Address Space MPI Collective Communication Library (SCCL)

– Efficient Zero-copy Derived Datatype Processing Engine (FALCON)

– Adaptive MPI Communication Runtime

– Kernel-assisted Communication On-loading

• Future Research Directions

• Broader Impact on HPC and AI Community

• Conclusion

Overview

42Network Based Computing Laboratory

Research Framework

Efficient Point-to-point Rendezvous

Communication Protocols

Applications

Programming
Models

Shared Address

Space and

Adaptive

Middleware

Modern HPC

Hardware

Multi-/Many-core CPU/GPU Systems High-speed Networks

Scientific Applications Deep Learning Frameworks

MVAPICH2: High-Performance Message Passing Library

Contention-free Truly Zero-copy MPI Collectives

Communication Library (SCCL)

Efficient Derived Datatypes

Processing Engine (FALCON)

Communication-aware Adaptive

MPI Runtime

Kernel-assisted Asynchronous

On-loading Engine

Xeon Phi
Open

POWER
EPYC

Azure

Cloud
InfiniBand Omni-Path

Message Passing Interface (MPI)
Partitioned Global Address Space

(OpenSHMEM, UPC++)

Deep Learning Communication

Middleware (Horovod over MPI)

MILC WRF
Mini*

Kernels
NAS OMB CNTK TensorFlow

NVIDIA

Volta

43Network Based Computing Laboratory

• Intra-node data-movement is blocking memory copies

• Many-cores such as Knights Landing (KNL) have lots of lightweight cores

• Broad Questions

– Can we dedicate some cores to derive MPI communication?

• Proposed Approach

– Kernel-assisted Shared Communication On-loading Engine

– Concurrent and asynchronous progression of communication

Kernel-assisted MPI Communication on Many-cores

44Network Based Computing Laboratory

RTS

Sender Receiver

MPI_Isend

C
o
m

p
u
te

MPI_Wait()

W
a
it

1. MPI_Irecv
2. Create Task (T)
3. Offload T

C
o
m

p
u
te

FIN

Designing Kernel-assisted Communication On-loading Engine

• Two design components

– API abstraction

– Kernel module

• High-level API

– Used by MPI runtime to

delegate tasks

– Integration with MVAPICH2

• Kernel module

– Task scheduling

– multi-threading,

– Signaling

MPI_Wait()

Kernel-assisted Communication Engine for MPI on Emerging Manycore Processors

J. Hashmi, K. Hamidouche, H. Subramoni, and D. K. Panda

24th IEEE HiPC ’17

Put () kthreadsShared

Task

Queue Scheduler

Poll ()

User Space

Kernel Space

45Network Based Computing Laboratory

Application Evaluations on KNL

• HPCG with MPI+OpenMP running 8 OpenMP threads per MPI process.

– Main benefits come from DDOT, MG, and DDOT Allreduce phases of HPCG

– Overall execution time is reduced by 15% over Intel MPI 2017

• CNTK Multi-level Perceptron (MLP) feed-forward neural network using MNIST dataset

15%

6%

HPCG CNTK (MLP+MNIST) Training

46Network Based Computing Laboratory

• Introduction

• Problem Statement

• Detailed Designs and Results

– Shared Address Space MPI Point-to-point Communication

– Shared Address Space MPI Collective Communication Library (SCCL)

– Efficient Zero-copy Derived Datatype Processing Engine (FALCON)

– Adaptive MPI Communication Runtime

– Kernel-assisted Communication On-loading

• Future Research Directions

• Broader Impact on HPC and AI Community

• Conclusion

Overview

47Network Based Computing Laboratory

Future Research Directions

• Applicability to Hybrid (MPI+X) Programming Models

– Hybrid MPI+OpenMP programming models becoming popular

– Can we exploit shared-address-space based designs for MPI+X models?

• Self-governed Communication Runtimes

– Communication middlewares (MPI, SHMEM) offer hundreds of tuning parameters

– Can we design a self-tuning runtime that adapts to communication requirements?

48Network Based Computing Laboratory

• Introduction

• Problem Statement

• Detailed Designs and Results

– Shared Address Space MPI Point-to-point Communication

– Shared Address Space MPI Collective Communication Library (SCCL)

– Efficient Zero-copy Derived Datatype Processing Engine (FALCON)

– Adaptive MPI Communication Runtime

– Kernel-assisted Communication On-loading

• Future Research Directions

• Broader Impact on HPC and AI Community

• Conclusion

Overview

49Network Based Computing Laboratory

Overview of the MVAPICH2 Project
• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 3,075 organizations in 89 countries

– More than 721,000 (> 0.7 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (November ‘19 ranking)

• 3rd ranked 10,649,640-core cluster (Sunway TaihuLight) at NSC, Wuxi, China

• 5th, 448, 448 cores (Frontera) at TACC

• 8th, 391,680 cores (ABCI) in Japan

• 14th, 570,020 cores (Nurion) in South Korea and many others

– Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, OpenHPC, and Spack)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade Partner in the 5th ranked TACC Frontera System

http://mvapich.cse.ohio-state.edu/

50Network Based Computing Laboratory

• Designs made available to the HPC

community via MVAPICH2-X

releases

• Adoption by other HPC stacks

– Shared address space

communication (adopted by MPICH)

– Efficient Datatype processing

(adopted by UCX)

• Proposed work is empowering

several of Top500 supercomputers

– TACC Stampede2, Frontera

– OSC Owens, Pitzer

Broader Impact on HPC and AI Community

Version Release Date Included Features

MVAPICH2-X 2.2b 03/30/2016 - Efficient support for UPC++ model via UCR

MVAPICH2-X 2.3rc1 09/21/2018
- XPMEM point-to-point protocols
- Truly Zero-copy reductions for InfiniBand
channel

MVAPICH2-X 2.3rc2 04/02/2019
- Contention-free collectives using XPMEM
- XPMEM collectives for Omni-Path networks

MVAPICH2-X 2.3rc3 03/03/2020
- XPMEM based collectives for PGAS runtimes
e.g., OpenSHMEM, UPC, and UPC++

Upcoming* TBD*
- Efficient datatype processing for CPU/GPU
- Adaptive rank-to-core mapping strategies

51Network Based Computing Laboratory

• Introduction

• Problem Statement

• Detailed Designs and Results

– Shared Address Space MPI Point-to-point Communication

– Shared Address Space MPI Collective Communication Library (SCCL)

– Efficient Zero-copy Derived Datatype Processing Engine (FALCON)

– Adaptive MPI Communication Runtime

– Kernel-assisted Communication On-loading

• Future Research Directions

• Broader Impact on HPC and AI Community

• Conclusion

Overview

52Network Based Computing Laboratory

• High core-density architectures are building next-generation ultra-scale systems

• Proposed work optimizes MPI communication for emerging multi-/many-core HPC systems via

novel design approaches

• Extends the state-of-the-art in distributed communication middlewares

• Significant impact on the community in transition to next-generation multi-/many-cores

– Adoption by other communication libraries (MPICH) and runtime (UCX)

• Broader outreach through MVAPICH2 public releases

– Empowering top supercomputers (TACC Frontera, SDSC Comet, OSC Owens)

• Proposed work defines the direction for future work on applicability to other programming

models and heterogeneous systems

Conclusion

53Network Based Computing Laboratory

Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

hashmi.29@osu.edu

web.cse.ohio-state.edu/~hashmi.29

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
mailto:hashmi.29@osu.edu

