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• Growth of High Performance Computing

• Wide variety in workload

• HPC Ecosystem: Popular choice for HPC and AI

• Scalability, Modularity, and Upgradability

Distributed Deep 
LearningGenome Sequencing Medical Imaging Galaxy Formation

Current and Next-Generation Applications
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Trends in Modern HPC Architecture
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Parallel Programming Models Overview

P1 P2 P3

Shared Memory

P1 P2 P3

Memory Memory Memory

P1 P2 P3

Memory Memory Memory

Shared Memory Model

SHMEM, DSM

Distributed Memory Model 

MPI (Message Passing Interface)

Partitioned Global Address Space (PGAS)

OpenSHMEM, UPC, UPC++, CAF …

• Programming models provide abstract machine models

• Models can be mapped on different types of systems

– e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

• MPI is the de-facto programming model for writing parallel applications

• MPI offers various communication primitives and data layouts

– Point-to-point, Collectives, Remote Memory Access

– Derived Datatypes

Logical shared memory
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Role of Communication Middleware

• MPI and PGAS libraries provide a wide range 
of communication primitives

• Point-to-point, Collective, One-sided

• Blocking vs. Non-blocking

• Provide non-contiguous data-layout 
representations

• MPI Derived datatypes

• Provide policies for resource mapping

• Process-to-core mappings

• Need to consider hardware capability as well 
as application’s needs

Communication Middlewares 

(MPI, PGAS, Tasks..)

Applications

(HPC, Deep Learning)

Emerging Hardware

(CPUs, Networks, GPUs, …)
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Challenges and Requirements

• High core-density and less memory-per-core

• Emerging application requirements

• Machine/Deep Learning 

• Scientific simulations

• Dynamic communication patterns

• Irregular (Graphs)

• Regular (Near-neighbor, Halo-exchange)

Design RequirementsResearch Challenges

• Efficient data-movement 

• Reduced memory-footprint

• Adapt to dynamic applications and hardware 

topologies

• Highly Concurrent and Asynchronous 

communication
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Broad Challenge

Designing High-performance, memory-efficient, and adaptive 

communication middleware for Next-generation Multi-/many-

core HPC Systems
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• Can we alleviate the bottlenecks of existing MPI intra-node designs and provide

performance and memory efficient MPI primitives?

• What are the overheads associated with non-contiguous data-movement MPI

and how can we alleviate these bottlenecks?

• How can we design an adaptive MPI runtime that bridges the lack of association

between dynamic applications and diverse HPC systems?

• How can we leverage the high core-density of modern architectures to design

asynchronous on-loading engine for MPI to achieve concurrency and overlap?

• What is the impact on real-world applications and systems?

Problem Statement
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Research Framework

Efficient Point-to-point Rendezvous 
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Contention-free Truly Zero-copy MPI Collectives 

Communication Library (SCCL)

Efficient Derived Datatypes 

Processing Engine (FALCON)
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MPI Runtime

Kernel-assisted Asynchronous 
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Xeon Phi
Open

POWER
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Azure 

Cloud
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Challenges in Intra-node Point-to-point Communication in MPI

Shared Memory (POSIX)

Requires two copies
No system call overhead

Better for Small Messages

Kernel-mapping (CMA/LiMIC/KNEM)

System call overhead
Lack of Load/store access
single (a.k.a “zero”) copy

Better for Large Messages

Sender

Receiver

Shared MMAP 

Region

map 

pages

Kernel 

address-space
Sender

Receiver

We require over-head free, user-space, load/store based inter-process 
communication mechanism, also called “Shared Address Space” communication
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Shared Address Space MPI Communication using XPMEM

Receiver

Address-space

Sender

Address Space

rbuf

sbuf

LD/ST

Copy

MPI Rendezvous Communication (RGET)

xpmem_get()

xpmem_attach()

Cross-partition Memory (XPMEM) 

• Kernel Module with user-space API 

• Allows a process to “attach” to the virtual memory 

segment of a remote process

ReceiverSender

FIN

Memcpy()
Copy Remote 

Data 

RTS

xpmem_get

xpmem_attach

xpmem_detach

xpmem_make

MPI_Recv()MPI_Send()
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Limitations of Shared Address Space Communication
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2-ppn 4-ppn 8-ppn 16-ppn• Experiment:

– XPMEM based one-to-all latency benchmark

– All processes read from a root process’ buffer

• Key observation:

– Up to 65% time spent in XPMEM registration for 

short message (4K)

– Lock contention with increasing PPN

– Vanilla shared address space design is 

suboptimal for MPI communication

Relative costs of XPMEM API functions for different PPN using one-
to-all communication benchmark on a single dual-socket Broadwell 

node with 14 cores.
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Proposed Registration Cache for XPMEM based Communication

• Broad Idea:

– Memory de-registration is delayed

– Maintain a cache of remote attached pages

– Detach pages only in MPI_Finalize() or when 

capacity-miss occurs (FIFO)

– MPI calls on the same buffers always hit!

• A new problem?

– Multiple calls to malloc/free on remote buffers

• Solution:

– Interception of malloc/free calls to invalidate 

remote mappings

Designing Efficient Shared Address Space Reduction Collectives for Multi-/Many-cores

J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. K. Panda

32nd IEEE IPDPS ’18
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Problems with State-of-the-art Zero-copy Collectives

P0

P2

P3 P4

P1

[1] S. Chakraborty, H. Subramoni, and D. K. Panda, Contention Aware Kernel-Assisted MPI Collectives for Multi/Many-core Systems, IEEE Cluster ’17, Best Paper Finalist

• One-to-all or all-to-one patterns

• CMA Broadcast, CMA Scatter, etc.

• Kernel-level contention

• CMA relies on get_user_pages()

• Page table lock at target process

1

2

3

4

5

6

7

8

1

2

3

4

A B

+

temp

+

Process 0 Process 1

• No load/store access via CMA

• Remote data has to be brought to local 

memory before operation

CMA read

Reduction ProblemContention Problem
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Proposed Shared Address Space Collective Communication 

Library (SCCL)

• Step-1:

– Ranks exchange buffer information

– Tuple of <vaddr, len, segid>

• Step-2:

– Peer ranks map remote memory segments

– Add entry to cache if not found

• Step-3:

– Intra-node barrier to enforce ordering

• Step-4:

– Plug our proposed XPMEM based collective 

implementation routines e.g., 

– MV2_XPMEM_Direct_<collective-name>

– Implemented all MPI collectives 

High-level Overview of XPMEM base Direct MPI 

Collectives Implementation
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Proposed Contention-free and Zero-copy MPI_Allreduce

D2

…

DN

D1

…

DN

D1

D2

…

DN

….

.

P1
P2 P3 PN

D1

D2

…

D1R’1

D2

DN

R’2

R’
N

Step-1: Parallel Intra-node Partitioned Reduce

…

…

…

D
N1

D
21

…R
11

D
N2

D
22

…R
12

D
N

M

D
2M

…R
1M

P11

P12

P1M

…

R
N1

D
21

…D
11

R
N2

D
22

…D
12

R
N

M

D
2M

…D
1M

PN1

PN2

PNM

…

Node-1

Node-2

Node-M

R
11

R
N1

R
N1

R
12

R
N2

R
1M

R
N

M

Step-2: Multi-root Inter-node Allreduce

…
DN

D1
…

DN

D1

D2

…

DN

…..

P1
P2 P3 PN

D1

D2

…

D1

D2

DN

D1 D1 D1

D2 D2

DNDNDN

R2D2

Step-3: Parallel Intra-node Partitioned Broadcast

Designing Efficient Shared Address Space Reduction Collectives for Multi-/Many-cores

J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. K. Panda

32nd IEEE IPDPS ’18
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Performance of Contention-free Zero-copy Collectives
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Limitations of Existing Pack/Unpack based Designs
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Copy Layout Translation• Design Challenges

– Flattening the layout into list of I/O 

vectors (Layout Translation)

– Significantly slow for nested datatypes

– Pack/Unpack requires two copies

• 2X overhead for large messages!!

• Proposed Solution:

– FALCON — FAst and Low-overhead 

Zero-copy MPI datatype processing 

COmmunication eNgine

– Amortized layout translation

– Zero-copy non-contiguous data 

movement
Cost breakdown of existing Pack/Unpack 

designs on Broadwell
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Proposed Designs: FALCON

ReceiverSender
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Basic Zero-copy Memoization-based Zero-copy

• Avoiding Remote Virtual 

Address Translation

– Attached segments are cached

• Communication pattern as input 

to the Hash function

– Request object has enough 

information 

– <Datatype, Count, Destination 

Rank, Tag, Communicator>
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No additional Overhead!!

FALCON: Efficient Designs for Zero-copy MPI Datatype Processing on Emerging Architectures

J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. K. Panda,

IEEE IPDPS ’19, Best Paper Finalist
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Extending FALCON for Dense Multi-GPU Systems (FALCON-X)

• Common issues in CUDA-aware MPI for Non-contiguous datatypes

• FALCON-X: Efficient MPI derived datatype for dense multi-GPU systems e.g., DGX-2

– Extends the ideas of FALCON for GPU systems using CUDA IPC

NAS_MG kernel on 2x Volta GPUs MILC kernel on 2x Volta GPUs Scaling 2D-stencil on DGX-2

FALCON-X: Zero-copy MPI Derived Datatype Processing on Modern CPU and GPU Architectures

J. Hashmi, C. Chu, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. K. Panda,

Journal of Parallel and Distributed Computing (JPDC ‘20)
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Challenges with Diverse Architectures and Applications

Latency test with various Rank-to-core placements with 

small (left) and large (right) messages

AMD EPYC 7551 Architecture

MPI Mappings on MiniGhost (Azure-HB)MPI Mappings on MiniAMR (Azure-HB)
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Proposed Design for Constructing Machine Topologies

NUMA-NUMA Bandwidth (Native AMD EPYC) NUMA-NUMA Bandwidth (Azure AMD VM)

• Low-level benchmarking approach to construct physical to virtual resource graph

– Use MCTOP[2] for cache-line level measurements

– Works regardless of the native and VM systems

[2] “Abstracting Multi-Core Topologies with MCTOP”, Georgios et al. EuroSys’17

Generated Topology Graph
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Proposed Efficient MPI Rank to Core Mappings

Communication Pattern (AMG) Communication Pattern (NAS_MG) Communication Pattern (MiniAMR)

• Efficient virtual to physical resource mapping algorithm

– Step 1: Construct topology graph (G) using MCTOP

– Step 2: Adaptively generate communication graph (G’) using MPI_T interception (on-the-fly)

– Step 3: Greedy style algorithms to map high-cost edges in G’ on to low-latency/high-bandwidth edges in G
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Machine-agnostic and Communication-aware Designs for MPI on Emerging Architectures

J. Hashmi, S. Xu, B. Ramesh, M. Bayatpour, H. Subramoni, and D. K. Panda

34th IEEE IPDPS ’20
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• Intra-node data-movement is blocking memory copies

• Many-cores such as Knights Landing (KNL) have lots of lightweight cores

• Broad Questions

– Can we dedicate some cores to derive MPI communication?

• Proposed Approach

– Kernel-assisted Shared Communication On-loading Engine 

– Concurrent and asynchronous progression of communication

Kernel-assisted MPI Communication on Many-cores
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Designing Kernel-assisted Communication On-loading Engine

• Two design components

– API abstraction

– Kernel module

• High-level API

– Used by MPI runtime to 

delegate tasks

– Integration with MVAPICH2

• Kernel module

– Task scheduling

– multi-threading, 

– Signaling

MPI_Wait()

Kernel-assisted Communication Engine for MPI on Emerging Manycore Processors 

J. Hashmi, K. Hamidouche, H. Subramoni, and D. K. Panda 

24th IEEE HiPC ’17
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Task 

Queue Scheduler
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User Space
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Application Evaluations on KNL 

• HPCG with MPI+OpenMP running 8 OpenMP threads per MPI process.

– Main benefits come from DDOT, MG, and DDOT Allreduce phases of HPCG

– Overall execution time is reduced by 15% over Intel MPI 2017

• CNTK Multi-level Perceptron (MLP) feed-forward neural network using MNIST dataset

15%

6%

HPCG CNTK (MLP+MNIST) Training 
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Future Research Directions

• Applicability to Hybrid (MPI+X) Programming Models

– Hybrid MPI+OpenMP programming models becoming popular

– Can we exploit shared-address-space based designs for MPI+X models?

• Self-governed Communication Runtimes

– Communication middlewares (MPI, SHMEM) offer hundreds of tuning parameters

– Can we design a self-tuning runtime that adapts to communication requirements?
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Overview of the MVAPICH2 Project
• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs  (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 3,075 organizations in 89 countries

– More than 721,000 (> 0.7 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (November ‘19 ranking)

• 3rd ranked 10,649,640-core cluster (Sunway TaihuLight) at  NSC, Wuxi, China

• 5th, 448, 448 cores (Frontera) at TACC

• 8th, 391,680 cores (ABCI) in Japan

• 14th, 570,020 cores (Nurion) in South Korea and many others

– Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, OpenHPC, and Spack)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade Partner in the 5th ranked TACC Frontera System

http://mvapich.cse.ohio-state.edu/
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• Designs made available to the HPC 

community via MVAPICH2-X 

releases

• Adoption by other HPC stacks

– Shared address space 

communication (adopted by MPICH)

– Efficient Datatype processing 

(adopted by UCX)

• Proposed work is empowering 

several of Top500 supercomputers

– TACC Stampede2, Frontera

– OSC Owens, Pitzer

Broader Impact on HPC and AI Community

Version Release Date Included Features

MVAPICH2-X 2.2b 03/30/2016 - Efficient support for UPC++ model via UCR

MVAPICH2-X 2.3rc1 09/21/2018
- XPMEM point-to-point protocols
- Truly Zero-copy reductions for InfiniBand 
channel

MVAPICH2-X 2.3rc2 04/02/2019
- Contention-free collectives using XPMEM
- XPMEM collectives for Omni-Path networks

MVAPICH2-X 2.3rc3 03/03/2020
- XPMEM based collectives for PGAS runtimes 
e.g., OpenSHMEM, UPC, and UPC++

Upcoming* TBD*
- Efficient datatype processing for CPU/GPU
- Adaptive rank-to-core mapping strategies
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• High core-density architectures are building next-generation ultra-scale systems

• Proposed work optimizes MPI communication for emerging multi-/many-core HPC systems via 

novel design approaches 

• Extends the state-of-the-art in distributed communication middlewares

• Significant impact on the community in transition to next-generation multi-/many-cores

– Adoption by other communication libraries (MPICH) and runtime (UCX)

• Broader outreach through MVAPICH2 public releases

– Empowering top supercomputers (TACC Frontera, SDSC Comet, OSC Owens)

• Proposed work defines the direction for future work on applicability to other programming 

models and heterogeneous systems

Conclusion
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Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

hashmi.29@osu.edu

web.cse.ohio-state.edu/~hashmi.29

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
mailto:hashmi.29@osu.edu

