
Design and Characterization of Shared Address

Space MPI Collectives on Modern Architectures

Jahanzeb Hashmi, Sourav Chakraborty, Mohammadreza Bayatpour,

Hari Subramoni and DK Panda

{hashmi.29, chakraborty.52, bayatpour.1, subramoni.1, panda.2}@osu.edu

Network Based Computing Laboratory (NBCL)

The Ohio State University

CCGrid ‘19 2Network Based Computing Laboratory

• Introduction and Motivation

• Background

– Shared-memory vs. Kernel-assisted Communication

• Shared Address-space (XPMEM) based Communication

– Quantifying Performance Bottlenecks

– Mitigating the Overheads with Proposed Designs

• Designing XPMEM based Collectives

• Performance Evaluation and Analysis

– Contrasting different Collectives Designs

– Comparison with other MPI libraries

– Scaling Two-level designs via XPMEM

• Concluding Remarks

Outline

CCGrid ‘19 3Network Based Computing Laboratory

Parallel Programming Models Overview

P1 P2 P3

Shared Memory

P1 P2 P3

Memory Memory Memory

P1 P2 P3

Memory Memory Memory

Shared Memory Model

SHMEM, DSM

Distributed Memory Model

MPI (Message Passing Interface)

Partitioned Global Address Space (PGAS)

Global Arrays, UPC, Chapel, X10, CAF, …

• Programming models provide abstract machine models

• Models can be mapped on different types of systems

– e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

• Programming models offer various communication primitives

– Point-to-point (between pair of processes/threads)

– Remote Memory Access (directly access memory of another process)

– Collectives (group communication)

Logical shared memory

CCGrid ‘19 4Network Based Computing Laboratory

Diversity in HPC Architectures

Dense Nodes ⇒More Intra Node Communication

CCGrid ‘19 5Network Based Computing Laboratory

• HPC Advisory Council (HPCAC) MPI application profiles

• Most application profiles showed majority of time spent in collective operations

• Optimizing collective communication directly impacts scientific applications

leading to accelerated scientific discovery

99

58

21
31

95

63

23 27

65

0

25

50

75

100

MPI-FFT VASP AMG COSMO Graph500 MiniFE MILC DL-POLY HOOMD-blue

P
e

rc
e
n

ta
g
e

 o
f

C
o
m

m
u

n
ic

a
ti
o
n

 T
im

e
 S

p
e

n
t
in

C

o
lle

c
ti
v
e

 O
p

e
ra

ti
o

n
s
 (

%
)

Why Collective Communication Matters?

Courtesy: http://www.hpcadvisorycouncil.com

A
llt

o
a

ll,
 B

c
a

s
t

A
llt

o
a

ll,
A

llr
e
d

u
c
e

A
llr

e
d

u
c
e

,
B

c
a

s
t,

A
llt

o
A

ll

A
llr

e
d

u
c
e

A
llr

e
d

u
c
e

,

B
c
a

s
t

A
llr

e
d

u
c
e

A
llr

e
d

u
c
e

A
llr

e
d

u
c
e

A
llr

e
d

u
c
e

,
B

c
a

s
t

CCGrid ‘19 6Network Based Computing Laboratory

• Can we exploit high-concurrency and high-bandwidth

offered by modern architectures?

– better resource utilization → high throughput → faster

communication performance

– Computation and communication offloading

• Can we design “zero-copy” and contention-free MPI

communication primitives?

– Memory copies are expensive on many-cores

– “Zero-copy” (kernel-assisted) designs are Contention-prone

Broad Challenges in MPI due to Architectural Diversity

CCGrid ‘19 7Network Based Computing Laboratory

• Introduction and Motivation

• Background

– Shared-memory vs. Kernel-assisted Communication

• Shared Address-space (XPMEM) based Communication

– Quantifying Performance Bottlenecks

– Mitigating the Overheads with Proposed Designs

• Designing XPMEM based Collectives

• Performance Evaluation and Analysis

– Contrasting different Collectives Designs

– Comparison with other MPI libraries

– Scaling Two-level designs via XPMEM

• Concluding Remarks

Outline

CCGrid ‘19 8Network Based Computing Laboratory

Intra-node Communication Designs in MPI

Shared Memory – SHMEM

Requires two copies
No system call overhead

Better for Small Messages

Kernel-Assisted Copy

System call overhead
Requires single(a.k.a “zero”) copy

Better for Large Messages

MPI Sender

MPI Receiver

Shared MMAP

Region

map

pages

Kernel

address-space

MPI Sender

MPI Receiver

CCGrid ‘19 9Network Based Computing Laboratory

• Introduction and Motivation

• Background

– Shared-memory vs. Kernel-assisted Communication

• Shared Address-space (XPMEM) based Communication

– Quantifying Performance Bottlenecks

– Mitigating the Overheads with Proposed Designs

• Designing XPMEM based Collectives

• Performance Evaluation and Analysis

– Contrasting different Collectives Designs

– Comparison with other MPI libraries

– Scaling Two-level designs via XPMEM

• Concluding Remarks

Outline

CCGrid ‘19 10Network Based Computing Laboratory

• XPMEM (https://gitlab.com/hjelmn/xpmem) --- “Cross-partition Memory”

– Mechanisms for a process to “attach” to the virtual memory segment of a remote process

– Consists of a user-space API and a kernel module

• The sender process calls “xpmem_make()” to create a shared segment

– Segment information is then shared with the receiver

• The receiver process calls “xpmem_get()” followed by “xpmem_attach()”

• The receiver process can directly read/write on the remote process’ memory

Shared Address-space based Communication

Direct LD/ST

Sender’s

Address-space

Receiver’s

Address Space

Create Shared

address-space

segment

Sender’s

Address-space

Receiver’s

Address Space

xpmem_make()

xpmem_get()

xpmem_attach()

https://gitlab.com/hjelmn/xpmem

CCGrid ‘19 11Network Based Computing Laboratory

Quantifying the Registration Overheads of XPMEM

0%

20%

40%

60%

80%

100%

120%

4
K

1
6

K

6
4

K

2
5

6
K

xpmem_detach memcpy xpmem_attach xpmem_get

4
K

1
6

K

6
4

K

2
5

6
K

4
K

1
6

K

6
4

K

2
5

6
K

4
K

1
6

K

6
4

K

2
5

6
K

2-ppn 4-ppn 8-ppn 16-ppn• XPMEM based one-to-all latency

benchmark

– Mimics rooted collectives

• A process needs to attach to remote

process before memcpy

• Up to 65% time spent in XPMEM

registration for short message (4K)

• Increasing PPN increases the cost of

xpmem_get()operation

– Lock contention

– Pronounced at small messages

Relative costs of XPMEM API functions for
different PPN using one-to-all communication
benchmark on a single dual-socket Broadwell
node with 14 cores.

CCGrid ‘19 12Network Based Computing Laboratory

A Variety of Available Zero-copy Mechanisms

LiMIC KNEM CMA XPMEM

Permission Check Not Supported Supported Supported Supported

Availability Kernel Module Kernel Module Included in Linux 3.2+ Kernel Module

Memcpy invocation Kernel-space Kernel-space Kernel-space User-space

LiMIC KNEM CMA XPMEM

MVAPICH2 √ x √ √ (upcoming release)

OpenMPI x √ √ √

Intel MPI x x √ x

Cray MPI x x √ √

MPI Library Support

CCGrid ‘19 13Network Based Computing Laboratory

How can we alleviate the overheads posed by XPMEM

registration and improve the performance of shared

address-space based MPI Collectives?

Registration Cache!

CCGrid ‘19 14Network Based Computing Laboratory

Registration Cache for XPMEM based Communication

• Per-rank AVL tree maintains remote attached pages

• Lazy memory de-registration principle

– Detach pages only in MPI_Finalize() or when

capacity-miss occurs (FIFO)

– MPI operations using same buffer do not incur

XPMEM registration overheads

• Multiple calls to malloc/free on the remote buffers lead to

invalid mappings

– Linux memory allocator maintains memory pools

– Access to attached buffer which has been freed on

remote rank, is considered invalid

• Interception of malloc/free calls to invalidate remote

mappings

A high-level flow of the proposed

Dynamic Registration Cache

CCGrid ‘19 15Network Based Computing Laboratory

0

100

200

300

400

500

2 4 8 16

La
te

n
cy

 (
u

s)

Concurrent Readers

XPMEM-NoCache
XPMEM-Cache

1

10

100

1000

10000

16K 64K 256K 1M 4M

La
te

n
cy

 (
u

s)

Message Size (bytes)

XPMEM-NoCache
XPMEM-Cache

Impact of Registration Cache on the Performance of XPMEM

based Point-to-point Communication

• Registration cache mitigates the overhead of XPMEM registration of remote memory segments

– At first miss, remote pages are attached and cached

• Look-up in registration cache cost O(log n) time due to AVL tree based design

• Benefits are more pronounced at small to medium message size

4.2X

0

2

4

6

8

10

2 4 8 16

La
te

n
cy

 (
u

s)
Concurrent Readers

XPMEM-NoCache
XPMEM-Cache

Two-process latency
at varying messages

Multi-process latency

at 16KB message

Multi-process latency

at 1MB message

5.7X

5.2X4.3X

CCGrid ‘19 16Network Based Computing Laboratory

1

10

100

1000

10000

2 4 8 16 28

La
te

n
cy

 (
u

s)

Concurrent Readers

CMA Read

XPMEM-Cached Read

Performance of CMA vs. XPMEM (with reg-cache) based

one-to-all Communication

• Latency comparison of CMA and XPMEM based “read” on a pair-wise one-to-all communication
pattern at 1MB message size

• CMA based reads suffer from process-level lock-contention inside the kernel

• XPMEM based reads do not have locking overheads and thus show significantly scalable performance

Broadwell (2-socket, 14-core)

1

10

100

1000

10000

100000

2 4 8 16 32 64

La
te

n
cy

 (
u

s)

Concurrent Readers

CMA Read

XPMEM-Cached Read

KNL (68-core, cache-mode)

23X 79X

CCGrid ‘19 17Network Based Computing Laboratory

• Introduction and Motivation

• Background

– Shared-memory vs. Kernel-assisted Communication

• Shared Address-space (XPMEM) based Communication

– Quantifying Performance Bottlenecks

– Mitigating the Overheads with Proposed Designs

• Designing XPMEM based Collectives

• Performance Evaluation and Analysis

– Contrasting different Collectives Designs

– Comparison with other MPI libraries

– Scaling Two-level designs via XPMEM

• Concluding Remarks

Outline

CCGrid ‘19 18Network Based Computing Laboratory

• Send/Recv based collectives

– Rely on the implementation of MPI point-to-point primitives

– Handshake overheads for each rendezvous message transfer

• Direct Shared-memory based MPI collectives

– Communication between pairs of processes realized by copying

message to a shared-memory region (copy-in / copy-out)

• Direct Kernel-assisted MPI collective e.g., CMA, LiMIC, KNEM

– Can perform direct “read” or “write” on the user buffers (zero-copy)

– Performance relies on the communication pattern of the collective

• Use two-level designs for inter-node

Existing Designs for MPI Collectives

CCGrid ‘19 19Network Based Computing Laboratory

Design Overview of XPMEM based Direct MPI Collectives

• All ranks in communicator call

xpmem_make() to generate segment id

• All ranks in communicator exchange

buffer, len, and segment id information

• All ranks in communicator attach to

remote buffers of the peer ranks

• After attachment, direct load/store access

is permitted

• An intra-node barrier is enforced to ensure

correctness and ordering

• Finally, a direct XPMEM collective

implementation is called e.g., Bcast

High-level Overview of XPMEM base

Direct MPI Collectives Implementation

CCGrid ‘19 20Network Based Computing Laboratory

Overview of the MVAPICH2 Project
• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 3,000 organizations in 88 countries

– More than 538,000 (> 0.5 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (Nov ‘18 ranking)

• 3rd ranked 10,649,640-core cluster (Sunway TaihuLight) at NSC, Wuxi, China

• 14th, 556,104 cores (Oakforest-PACS) in Japan

• 17th, 367,024 cores (Stampede2) at TACC

• 27th, 241,108-core (Pleiades) at NASA and many others

– Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, and OpenHPC)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade

Partner in the upcoming TACC Frontera System

http://mvapich.cse.ohio-state.edu/

CCGrid ‘19 21Network Based Computing Laboratory

Specification Xeon Xeon Phi

Processor Family Intel Broadwell Knights Landing

Processor Model E5 2680v4 KNL 7250

Clock Speed 2.4 GHz 1.4 GHz

No. of Sockets 2 1

Cores Per Socket 14 68

Threads Per Core 1 4

RAM (DDR) 128 GB 96 GB

Interconnect IB-EDR (100G) IB-EDR (100G)

Evaluation Methodology and Cluster Testbeds

• XPMEM based designs, implemented on MVAPICH2 is referred to as “MV2 (Proposed)”

• Comparison against various collectives design in MVAPICH2

• Comparison against other MPI libraries e.g., MVPAPICH2-2.3b, Intel MPI v2018.1.163,

and OpenMPI v3.0.1

Hardware Specification of Cluster Testbeds

CCGrid ‘19 22Network Based Computing Laboratory

• Introduction and Motivation

• Background

– Shared-memory vs. Kernel-assisted Communication

• Shared Address-space (XPMEM) based Communication

– Quantifying Performance Bottlenecks

– Mitigating the Overheads with Proposed Designs

• Designing XPMEM based Collectives

• Performance Evaluation and Analysis

– Contrasting different Collectives Designs

– Comparison with other MPI libraries

– Scaling Two-level designs via XPMEM

• Concluding Remarks

Outline

CCGrid ‘19 23Network Based Computing Laboratory

1

10

100

1000

10000

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

4
M

MV2X (SHM)
MV2X (P2P)
MV2X (CMA Coll)
MV2X (Proposed)

Contrasting with Bcast Designs in MVAPICH2

• On Broadwell, up to 5X improvement over direct CMA collectives.

• Up to 13% improvement in Bcast latency over CMA collectives on KNL.

1

10

100

1000

10000
4

K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

4
M

MV2X (SHM)
MV2X (P2P)
MV2X (CMA Coll)
MV2X (Proposed)

L
a

te
n

c
y
 (

u
s
)

5X over
CMA Coll

Message Size (bytes)

L
a
te

n
c
y
 (

u
s
)

Message Size (bytes)

Broadwell

13% over
CMA coll

KNL (Cache-mode)

CCGrid ‘19 24Network Based Computing Laboratory

Performance of Scatter on Broadwell and KNL

• XPMEM based direct Scatter achieve up to 20X and 25X improvement over direct

CMA collectives on Broadwell and KNL, respectively.

1

10

100

1000

10000

100000
4

K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

4
M

MV2X (SHM)

MV2X (P2P)

MV2X (CMA Coll)

MV2X (Proposed)

L
a

te
n

c
y
 (

u
s
)

20X over
CMA-coll

Message Size (bytes)

1

10

100

1000

10000

100000

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

4
M

MV2X (SHM)
MV2X (P2P)
MV2X (CMA Coll)
MV2X (Proposed)

L
a

te
n

c
y
 (

u
s
)

25X over
CMA-coll

Message Size (bytes)

Broadwell KNL (Cache-mode)

CCGrid ‘19 25Network Based Computing Laboratory

Performance of Gather on Broadwell and KNL

1

10

100

1000

10000
4

K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

4
M

MV2X (SHM)
MV2X (P2P)
MV2X (CMA Coll)
MV2X (Proposed)

L
a

te
n

c
y
 (

u
s
)

23X over
CMA coll

Message Size (bytes)

Broadwell

1

10

100

1000

10000

100000

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

4
M

MV2X (SHM)
MV2X (P2P)
MV2X (CMA Coll)
MV2X (Proposed)

L
a
te

n
c
y
 (

u
s
)

9X over
CMA coll

Message Size (bytes)

KNL (Cache-mode)

• XPMEM based direct Gather achieve up to 23X and 9X improvement over direct

CMA collectives on Broadwell and KNL, respectively.

CCGrid ‘19 26Network Based Computing Laboratory

Performance of Alltoall on Broadwell and KNL

1

100

10000

1000000

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

4
M

MV2X (SHM)
MV2X (P2P)
MV2X (CMA Coll)
MV2X (Proposed)

L
a

te
n

c
y
 (

u
s
)

Broadwell

Message Size (bytes)

1

100

10000

1000000

1
2

8

2
5

6

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

MV2X (SHM)
MV2X (P2P)
MV2X (CMA Coll)
MV2X (Proposed)

L
a
te

n
c
y
 (

u
s
)

Message Size (bytes)

KNL (Cache Mode)

• XPMEM based direct Gather achieve up to 20X and 25X improvement over direct

CMA collectives on Broadwell and KNL, respectively.

CCGrid ‘19 27Network Based Computing Laboratory

• Introduction and Motivation

• Background

– Shared-memory vs. Kernel-assisted Communication

• Shared Address-space (XPMEM) based Communication

– Quantifying Performance Bottlenecks

– Mitigating the Overheads with Proposed Designs

• Designing XPMEM based Collectives

• Performance Evaluation and Analysis

– Contrasting different Collectives Designs

– Comparison with other MPI libraries

– Scaling Two-level designs via XPMEM

• Concluding Remarks

Outline

CCGrid ‘19 28Network Based Computing Laboratory

1

10

100

1000

10000

100000

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

4
M

Intel MPI 2018
OpenMPI 3.0.1
MV2X (CMA Coll)
MV2X (Proposed)

Performance of Bcast on Broadwell and KNL

1

10

100

1000

10000
4

K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

4
M

Intel MPI 2018
OpenMPI 3.0.1
MV2X (CMA Coll)
MV2X (Proposed)

L
a

te
n

c
y
 (

u
s
)

6X over
Open MPI

Message Size (bytes)

L
a
te

n
c
y
 (

u
s
)

Message Size (bytes)

Broadwell

30% over IMPI
23% over CMA-coll
9X over Open MPI

KNL (Cache-mode)

• Up to 6X improvement over Open MPI on Broadwell.

• Up to 30%, 23%, and 9X improvement over IMPI, direct CMA collectives, and

Open MPI, respectively, on KNL

CCGrid ‘19 29Network Based Computing Laboratory

Performance of Scatter on Broadwell and KNL

1

10

100

1000

10000

100000
4

K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

4
M

Intel MPI 2018

OpenMPI 3.0.1

MV2X (CMA Coll)

MV2X (Proposed)

L
a

te
n

c
y
 (

u
s
)

28X over
CMA-coll

Message Size (bytes)

1

10

100

1000

10000

100000

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

4
M

Intel MPI 2018
OpenMPI 3.0.1
MV2X (CMA Coll)
MV2X (Proposed)

L
a

te
n

c
y
 (

u
s
)

25X over
CMA-coll

Message Size (bytes)

Broadwell KNL (Cache-mode)

• Propose XPMEM designs achieved up to 28X and 25X improvement over direct

CMA collectives on Broadwell and KNL, respectively.

CCGrid ‘19 30Network Based Computing Laboratory

Performance of Gather on Broadwell and KNL

1

10

100

1000

10000

100000

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

4
M

Intel MPI 2018

OpenMPI 3.0.1

MV2X (CMA Coll)

MV2X (Proposed)

L
a

te
n

c
y
 (

u
s
)

10X better
than Intel MPI

Message Size (bytes)

Broadwell

1

10

100

1000

10000

100000

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

4
M

Intel MPI 2018
OpenMPI 3.0.1
MV2X (CMA Coll)
MV2X (Proposed)

L
a
te

n
c
y
 (

u
s
)

19X better
than Intel MPI

Message Size (bytes)

KNL (Cache-mode)

• Up to 10X improvement over Intel MPI on Broadwell.

• Up to 19X better Gather latency over Intel MPI is observed.

CCGrid ‘19 31Network Based Computing Laboratory

Performance of Alltoall on Broadwell and KNL

1

100

10000
4

K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

4
M

Intel MPI 2018
OpenMPI 3.0.1
MV2X (CMA Coll)
MV2X (Proposed)

L
a

te
n

c
y
 (

u
s
)

Broadwell

Message Size (bytes)

1

100

10000

1000000

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

4
M

Intel MPI 2018
OpenMPI 3.0.1
MV2X (CMA Coll)
MV2X (Proposed)

L
a
te

n
c
y
 (

u
s
)

Message Size (bytes)

KNL (Cache-mode)

• Alltoall performance of direct algorithms depend on cache size

• For small to medium message, good improvement is observed over other libraries

CCGrid ‘19 32Network Based Computing Laboratory

• Introduction and Motivation

• Background

– Shared-memory vs. Kernel-assisted Communication

• Shared Address-space (XPMEM) based Communication

– Quantifying Performance Bottlenecks

– Mitigating the Overheads with Proposed Designs

• Designing XPMEM based Collectives

• Performance Evaluation and Analysis

– Contrasting different Collectives Designs

– Comparison with other MPI libraries

– Scaling Two-level designs via XPMEM

• Concluding Remarks

Outline

CCGrid ‘19 33Network Based Computing Laboratory

0

50

100

150

8K 16K 32K 64K

MV2X (default)

MV2X (CMA coll)

MV2X (Proposed)

Impact on Inter-node Scaling via two-level Collective Designs:

MPI_Gather

L
a
te

n
c
y
 (

u
s
)

Broadwell 4-nodes

Message Size (bytes)

• Hierarchical collectives use XPMEM based direct algorithms for intra-node phases.

• Proposed XPMEM collectives achieve scalable performance with multiple nodes.

0

50

100

150

8K 16K 32K 64K

MV2X (default)

MV2X (CMA coll)

MV2X (Proposed)

L
a
te

n
c
y
 (

u
s
)

Broadwell 8-nodes

Message Size (bytes)

CCGrid ‘19 34Network Based Computing Laboratory

• Introduction and Motivation

• Background

– Shared-memory vs. Kernel-assisted Communication

• Shared Address-space (XPMEM) based Communication

– Quantifying Performance Bottlenecks

– Mitigating the Overheads with Proposed Designs

• Designing XPMEM based Collectives

• Performance Evaluation and Analysis

– Contrasting different Collectives Designs

– Comparison with other MPI libraries

– Scaling Two-level designs via XPMEM

• Concluding Remarks

Outline

CCGrid ‘19 35Network Based Computing Laboratory

• Characterized the performance trade-offs involved in designing Shared address-space

based collectives communication in MPI

– Registration cache based schemes to overcome performance bottlenecks

– Alleviate the overheads posed by the memory allocator interactions with reg-cache

• Design and Implementation of MPI collectives using Shared Address-spaces

– Demonstrated the performance benefits of new MPI_Bcast, MPI_Scatter, MPI_Gather,

MPI_Allgather, and MPI_Alltoall multi- and many-core architectures

• Demonstrated the efficacy of the proposed solutions for various microbenchmarks

– Improved performance over state-of-the-art collectives design in MVAPICH2

– Significant improvement over prevalent MPI libraries

• We plan to expand our designs to other architectures e.g., ARM etc.

Concluding Remarks

CCGrid ‘19 36Network Based Computing Laboratory

Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

hashmi.29@osu.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
mailto:Hashmi.29osu.edu@

CCGrid ‘19 37Network Based Computing Laboratory

Breakdown of a CMA Read operation

• CMA relies on get_user_pages()
function

• Takes a page table lock on the
target process

• Lock contention increases with
number of concurrent readers

• Over 90% of total time spent in
lock contention

• One-to-all communication on Broadwell,
profiled using ftrace

• Lock contention is the root cause of performance degradation
• Present in other kernel-assisted schemes such as KNEM, LiMiC as well

La
te

n
cy

 (
u

s)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

10	
Pages

50	
Pages

100	
Pages

10	
Pages

50	
Pages

100	
Pages

10	
Pages

50	
Pages

100	
Pages

No	Contention 14	Readers 28	Readers

System	Call

Permission	Check

Acquire	Locks

Copy	Data

Pin	Pages

S. Chakraborty, H. Subramoni, and D. K. Panda, Contention Aware Kernel-Assisted MPI Collectives for Multi/Many-core Systems, IEEE Cluster ’17, BEST Paper Finalist

CCGrid ‘19 38Network Based Computing Laboratory

Impact of Collective Communication Pattern on CMA Collectives

1

10

100

1000

10000

100000

1000000

1K 4K 16K 64K 256K 1M 4M
Message Size

Different Processes

PPN-2
PPN-4
PPN-8
PPN-16
PPN-32
PPN-64

1

10

100

1000

10000

100000

1000000

1K 4K 16K 64K 256K 1M 4M
Message Size

Same Process, Same Buffer

1

10

100

1000

10000

100000

1000000

1K 4K 16K 64K 256K 1M 4M
Message Size

Same Process, Diff Buffers

La
te

n
cy

 (
u

s)

All-to-All – Good Scalability One-to-All - Poor Scalability One-to-All – Poor Scalability

> 100x
worse

> 100x
worse

No increase
with PPN

P0

P1
P3

P2

P0

P1 P3

P2

P0

P1 P3

P2

Contention is at
Process level

S. Chakraborty, H. Subramoni, and D. K. Panda, Contention Aware Kernel-Assisted MPI Collectives for Multi/Many-core Systems, IEEE Cluster ’17, BEST Paper Finalist

CCGrid ‘19 39Network Based Computing Laboratory

Scalability Evaluation on Broadwell Cluster

OSU_Allreduce

• 32 nodes, 896 processes (28ppn) of dual-socket Broadwell system

• Up to 5.6X improvement for 4MB AllReduce and 3X improvement for 4MB Reduce

OSU_Reduce

0

500

1000

8K 16K 32K 64K 128K

MVAPICH2-2.3rc1
Intel MPI 2017
MVAPICH2-XPMEM

0

5000

10000

15000

20000

256K 512K 1M 2M 4M

MVAPICH2-2.3rc1

1

100

10000

8K 16K 32K 64K 128K

MVAPICH2-2.3rc1
Intel MPI 2017
MVAPICH2-XPMEM

0

5000

10000

256K 512K 1M 2M 4M

MVAPICH2-2.3rc1
Intel MPI 2017
MVAPICH2-XPMEM

L
a

te
n

c
y
 (

u
s
)

L
a

te
n

c
y
 (

u
s
)

5.6X
41%

3X

CCGrid ‘19 40Network Based Computing Laboratory

Registration Cache Miss-rate Analysis on Various Benchmarks

Benchmark MPI
Processes

No. of Hits No. of Misses

MiniAMR 256 10,322,520 30

osu_allreduce 224 223,668 432

osu_reduce 224 111,834 216

• Application kernels typically re-use same buffers for communication

– High hit-rate for the registration cache due to temporal locality

• Tuning of registration cache parameters e.g., eviction policy, cache size etc.

– FIFO performed better than LRU for a fixed sized cache

– 4K as optimal cache size

Registration cache Hit/miss (per-process) analysis on Broadwell System

CCGrid ‘19 41Network Based Computing Laboratory

Reduction Collectives on Broadwell Cluster

1

10

100

1000

10000

100000

La
te

n
cy

 (
u

s)

Message Size

MVAPICH2-2.3rc1

Intel MPI 2017

MVAPICH2-XPMEM

OSU_Allreduce (Broadwell 256 procs)

• “Shared Address Space”-based true zero-copy Reduction collective designs in MVAPICH2

• Offloaded computation/communication to peers ranks in reduction collective operation

• Up to 4X improvement for 4MB Reduce and up to 1.8X improvement for 4M AllReduce

1.8X

1

10

100

1000

10000

100000

Message Size

MVAPICH2-2.3rc1
Intel MPI 2017
MVAPICH2-XPMEM

OSU_Reduce (Broadwell 256 procs)

4X

37%
50%

CCGrid ‘19 42Network Based Computing Laboratory

Reduction Collectives on OpenPOWER

0

1000

2000

3000

4000

La
te

n
cy

 (
u

s)

Message Size

MVAPICH2-2.3rc1
SpectrumMPI-10.1.0
OpenMPI-3.0.0
MVAPICH2-XPMEM

OSU_Allreduce (POWER8 nodes=2, ppn=20)

• OpenPOWER system with 2xPOWER8 nodes

• Significant performance gains over OpenMPI and Spectrum MPI

– Up to 2X improvement for 4MB Allreduce and up to 3X improvement for 4M Reduce

2X

0

10000

20000

30000

40000

4
K

8
K

1
6
K

3
2
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

1
M

2
M

4
M

8
M

1
6
M

Message Size

MVAPICH2-2.3rc1

SpectrumMPI-10.1.0

OpenMPI-3.0.0

MVAPICH2-XPMEM

OSU_Reduce (POWER8 nodes=2, ppn=20)

3X

CCGrid ‘19 43Network Based Computing Laboratory

Reduction Collectives at Scale

1

10

100

1000

10000

100000

4K 8K 16K 32K 64K 128K 256K 512K 1M

La
te

n
cy

 (
u

s)

Message Size

MVAPICH2-2.3b
IMPI-2017v1.132
MVAPICH2-Opt

OSU_Allreduce (Broadwell 896 procs)

• Shared Address Space based true zero-copy Reduce/AllReduce designs in MVAPICH2

• Significant performance improvement over existing designs by avoiding memory copies

and sharing computation/communication to peers ranks in collective operation

9X

3.6X

1

10

100

1000

10000

100000

4K 8K 16K 32K 64K 128K 256K 512K 1M
Message Size

MVAPICH2-2.3b
IMPI-2017v1.132
MVAPICH2-Opt

OSU_Reduce (Broadwell 896 procs)

6X

