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Parallel Programming Models Overview

P1 P2 P3

Shared Memory

P1 P2 P3

Memory Memory Memory

P1 P2 P3

Memory Memory Memory

Shared Memory Model

SHMEM, DSM

Distributed Memory Model 

MPI (Message Passing Interface)

Partitioned Global Address Space (PGAS)

Global Arrays, UPC, Chapel, X10, CAF, …

• Programming models provide abstract machine models

• Models can be mapped on different types of systems

– e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

• Programming models offer various communication primitives

– Point-to-point (between pair of processes/threads)

– Remote Memory Access (directly access memory of another process)

– Collectives (group communication)

Logical shared memory
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Diversity in HPC Architectures

Dense Nodes ⇒More Intra Node Communication
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• HPC Advisory Council (HPCAC) MPI application profiles

• Most application profiles showed majority of time spent in collective operations

• Optimizing collective communication directly impacts scientific applications 

leading to accelerated scientific discovery
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Why Collective Communication Matters?

Courtesy: http://www.hpcadvisorycouncil.com
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• Can we exploit high-concurrency and high-bandwidth 

offered by modern architectures?

– better resource utilization → high throughput → faster 

communication performance

– Computation and communication offloading 

• Can we design “zero-copy” and contention-free MPI 

communication primitives?

– Memory copies are expensive on many-cores 

– “Zero-copy” (kernel-assisted) designs are Contention-prone

Broad Challenges in MPI due to Architectural Diversity
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Intra-node Communication Designs in MPI

Shared Memory – SHMEM

Requires two copies
No system call overhead

Better for Small Messages

Kernel-Assisted Copy

System call overhead
Requires single(a.k.a “zero”) copy

Better for Large Messages

MPI Sender

MPI Receiver

Shared MMAP 

Region

map 

pages

Kernel 

address-space

MPI Sender

MPI Receiver
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• XPMEM (https://gitlab.com/hjelmn/xpmem) --- “Cross-partition Memory” 

– Mechanisms for a process to “attach” to the virtual memory segment of a remote process

– Consists of a user-space API and a kernel module

• The sender process calls “xpmem_make()” to create a shared segment

– Segment information is then shared with the receiver

• The receiver process calls “xpmem_get()” followed by “xpmem_attach()”

• The receiver process can directly read/write on the remote process’ memory

Shared Address-space based Communication

Direct LD/ST

Sender’s

Address-space

Receiver’s

Address Space

Create Shared 

address-space 

segment

Sender’s

Address-space

Receiver’s

Address Space

xpmem_make()

xpmem_get()

xpmem_attach()

https://gitlab.com/hjelmn/xpmem
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Quantifying the Registration Overheads of XPMEM
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– Mimics rooted collectives 

• A process needs to attach to remote 

process before memcpy

• Up to 65% time spent in XPMEM 

registration for short message (4K)

• Increasing PPN increases the cost of 

xpmem_get()operation

– Lock contention

– Pronounced at small messages

Relative costs of XPMEM API functions for 
different PPN using one-to-all communication 
benchmark on a single dual-socket Broadwell 
node with 14 cores.
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A Variety of Available Zero-copy Mechanisms

LiMIC KNEM CMA XPMEM

Permission Check Not Supported Supported Supported Supported

Availability Kernel Module Kernel Module Included in Linux 3.2+ Kernel Module

Memcpy invocation Kernel-space Kernel-space Kernel-space User-space

LiMIC KNEM CMA XPMEM

MVAPICH2 √ x √ √ (upcoming release)

OpenMPI x √ √ √

Intel MPI x x √ x

Cray MPI x x √ √

MPI Library Support
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How can we alleviate the overheads posed by XPMEM 

registration and improve the performance of shared 

address-space based MPI Collectives?

Registration Cache!
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Registration Cache for XPMEM based Communication

• Per-rank AVL tree maintains remote attached pages

• Lazy memory de-registration principle

– Detach pages only in MPI_Finalize() or when 

capacity-miss occurs (FIFO)

– MPI operations using same buffer do not incur 

XPMEM registration overheads

• Multiple calls to malloc/free on the remote buffers lead to 

invalid mappings 

– Linux memory allocator maintains memory pools

– Access to attached buffer which has been freed on 

remote rank, is considered invalid

• Interception of malloc/free calls to invalidate remote 

mappings

A high-level flow of the proposed 

Dynamic Registration Cache
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• Registration cache mitigates the overhead of XPMEM registration of remote memory segments

– At first miss, remote pages are attached and cached

• Look-up in registration cache cost O(log n) time due to AVL tree based design

• Benefits are more pronounced at small to medium message size
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Performance of CMA vs. XPMEM (with reg-cache) based 

one-to-all Communication

• Latency comparison of CMA and XPMEM based “read” on a pair-wise one-to-all communication 
pattern at 1MB message size

• CMA based reads suffer from process-level lock-contention inside the kernel

• XPMEM based reads do not have locking overheads and thus show significantly scalable performance

Broadwell (2-socket, 14-core)
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• Send/Recv based collectives

– Rely on the implementation of MPI point-to-point primitives

– Handshake overheads for each rendezvous message transfer

• Direct Shared-memory based MPI collectives

– Communication between pairs of processes realized by copying 

message to a shared-memory region (copy-in / copy-out)

• Direct Kernel-assisted MPI collective e.g., CMA, LiMIC, KNEM

– Can perform direct “read” or “write” on the user buffers (zero-copy)

– Performance relies on the communication pattern of the collective

• Use two-level designs for inter-node

Existing Designs for MPI Collectives
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Design Overview of XPMEM based Direct MPI Collectives

• All ranks in communicator call 

xpmem_make() to generate segment id

• All ranks in communicator exchange 

buffer, len, and segment id information

• All ranks in communicator attach to 

remote buffers of the peer ranks

• After attachment, direct load/store access 

is permitted

• An intra-node barrier is enforced to ensure 

correctness and ordering

• Finally, a direct XPMEM collective 

implementation is called e.g., Bcast

High-level Overview of XPMEM base 

Direct MPI Collectives Implementation
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Overview of the MVAPICH2 Project
• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs  (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 3,000 organizations in 88 countries

– More than 538,000 (> 0.5 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (Nov ‘18 ranking)

• 3rd ranked 10,649,640-core cluster (Sunway TaihuLight) at  NSC, Wuxi, China

• 14th, 556,104 cores (Oakforest-PACS) in Japan

• 17th, 367,024 cores (Stampede2) at TACC

• 27th, 241,108-core (Pleiades) at NASA and many others

– Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, and OpenHPC)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade

Partner in the upcoming TACC Frontera System

http://mvapich.cse.ohio-state.edu/
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Specification Xeon Xeon Phi

Processor Family Intel Broadwell Knights Landing

Processor Model E5 2680v4 KNL 7250

Clock Speed 2.4 GHz 1.4 GHz

No. of Sockets 2 1

Cores Per Socket 14 68

Threads Per Core 1 4

RAM (DDR) 128 GB 96 GB

Interconnect IB-EDR (100G) IB-EDR (100G) 

Evaluation Methodology and Cluster Testbeds

• XPMEM based designs, implemented on MVAPICH2 is referred to as “MV2 (Proposed)”

• Comparison against various collectives design in MVAPICH2

• Comparison against other MPI libraries e.g., MVPAPICH2-2.3b, Intel MPI v2018.1.163, 

and OpenMPI v3.0.1

Hardware Specification of Cluster Testbeds
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Contrasting with Bcast Designs in MVAPICH2

• On Broadwell, up to 5X improvement over direct CMA collectives.

• Up to 13% improvement in Bcast latency over CMA collectives on KNL.
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Performance of Scatter on Broadwell and KNL

• XPMEM based direct Scatter achieve up to 20X and 25X improvement over direct 

CMA collectives on Broadwell and KNL, respectively.
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Performance of Gather on Broadwell and KNL
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• XPMEM based direct Gather achieve up to 23X and 9X improvement over direct 

CMA collectives on Broadwell and KNL, respectively.
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Performance of Alltoall on Broadwell and KNL
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• XPMEM based direct Gather achieve up to 20X and 25X improvement over direct 

CMA collectives on Broadwell and KNL, respectively.
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• Up to 6X improvement over Open MPI on Broadwell. 

• Up to 30%, 23%, and 9X improvement over IMPI, direct CMA collectives, and 

Open MPI, respectively, on KNL
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Performance of Scatter on Broadwell and KNL
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• Propose XPMEM designs achieved up to 28X and 25X improvement over direct 

CMA collectives on Broadwell and KNL, respectively. 
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Performance of Gather on Broadwell and KNL

1

10

100

1000

10000

100000

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

4
M

Intel MPI 2018

OpenMPI 3.0.1

MV2X (CMA Coll)

MV2X (Proposed)

L
a

te
n

c
y
 (

u
s
)

10X better 
than Intel MPI

Message Size (bytes)

Broadwell

1

10

100

1000

10000

100000

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

4
M

Intel MPI 2018
OpenMPI 3.0.1
MV2X (CMA Coll)
MV2X (Proposed)

L
a
te

n
c
y
 (

u
s
)

19X better 
than Intel MPI

Message Size (bytes)

KNL (Cache-mode)

• Up to 10X improvement over Intel MPI on Broadwell. 

• Up to 19X better Gather latency over Intel MPI is observed.
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Performance of Alltoall on Broadwell and KNL

1

100

10000
4

K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

4
M

Intel MPI 2018
OpenMPI 3.0.1
MV2X (CMA Coll)
MV2X (Proposed)

L
a

te
n

c
y
 (

u
s
)

Broadwell

Message Size (bytes)

1

100

10000

1000000

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

4
M

Intel MPI 2018
OpenMPI 3.0.1
MV2X (CMA Coll)
MV2X (Proposed)

L
a
te

n
c
y
 (

u
s
)

Message Size (bytes)

KNL (Cache-mode)

• Alltoall performance of direct algorithms depend on cache size 

• For small to medium message, good improvement is observed over other libraries
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• Hierarchical collectives use XPMEM based direct algorithms for intra-node phases.

• Proposed XPMEM collectives achieve scalable performance with multiple nodes.
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• Introduction and Motivation

• Background

– Shared-memory vs. Kernel-assisted Communication

• Shared Address-space (XPMEM) based Communication

– Quantifying Performance Bottlenecks

– Mitigating the Overheads with Proposed Designs

• Designing XPMEM based Collectives

• Performance Evaluation and Analysis

– Contrasting different Collectives Designs

– Comparison with other MPI libraries

– Scaling Two-level designs via XPMEM

• Concluding Remarks

Outline
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• Characterized the performance trade-offs involved in designing Shared address-space 

based collectives communication in MPI 

– Registration cache based schemes to overcome performance bottlenecks

– Alleviate the overheads posed by the memory allocator interactions with reg-cache

• Design and Implementation of MPI collectives using Shared Address-spaces 

– Demonstrated the performance benefits of new MPI_Bcast, MPI_Scatter, MPI_Gather, 

MPI_Allgather, and MPI_Alltoall multi- and many-core architectures

• Demonstrated the efficacy of the proposed solutions for various microbenchmarks

– Improved performance over state-of-the-art collectives design in MVAPICH2

– Significant improvement over prevalent MPI libraries

• We plan to expand our designs to other architectures e.g., ARM etc.

Concluding Remarks
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Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

hashmi.29@osu.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
mailto:Hashmi.29osu.edu@
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Breakdown of a CMA Read operation

• CMA relies on get_user_pages()
function

• Takes a page table lock on the 
target process

• Lock contention increases with 
number of concurrent readers

• Over 90% of total time spent in 
lock contention

• One-to-all communication on Broadwell, 
profiled using ftrace

• Lock contention is the root cause of performance degradation
• Present in other kernel-assisted schemes such as KNEM, LiMiC as well
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S. Chakraborty, H. Subramoni, and D. K. Panda, Contention Aware Kernel-Assisted MPI Collectives for Multi/Many-core Systems, IEEE Cluster ’17, BEST Paper Finalist
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Impact of Collective Communication Pattern on CMA Collectives
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Scalability Evaluation on Broadwell Cluster

OSU_Allreduce

• 32 nodes, 896 processes (28ppn) of dual-socket Broadwell system

• Up to 5.6X improvement for 4MB AllReduce and 3X improvement for 4MB Reduce

OSU_Reduce
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Registration Cache Miss-rate Analysis on Various Benchmarks

Benchmark MPI 
Processes

No. of Hits No. of Misses

MiniAMR 256 10,322,520 30

osu_allreduce 224 223,668 432

osu_reduce 224 111,834 216

• Application kernels typically re-use same buffers for communication

– High hit-rate for the registration cache due to temporal locality

• Tuning of registration cache parameters e.g., eviction policy, cache size etc.

– FIFO performed better than LRU for a fixed sized cache

– 4K as optimal cache size

Registration cache Hit/miss (per-process) analysis on Broadwell System
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Reduction Collectives on Broadwell Cluster
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• “Shared Address Space”-based true zero-copy Reduction collective designs in MVAPICH2

• Offloaded computation/communication to peers ranks in reduction collective operation

• Up to 4X improvement for 4MB Reduce and up to 1.8X improvement for 4M AllReduce
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Reduction Collectives on OpenPOWER
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• OpenPOWER system with 2xPOWER8 nodes

• Significant performance gains over OpenMPI and Spectrum MPI 

– Up to 2X improvement for 4MB Allreduce and up to 3X improvement for 4M Reduce
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Reduction Collectives at Scale
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• Shared Address Space based true zero-copy Reduce/AllReduce designs in MVAPICH2

• Significant performance improvement over existing designs by avoiding memory copies 

and sharing computation/communication to peers ranks in collective operation
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