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Trends in Modern HPC Architecture
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Diversity in HPC Architectures

Knights Landing (KNL) Xeon OpenPower

Clock Speed Low High Very High

Core count High (64-72) medium (8-24) Low (8-20)

Hardware Threads Medium (4) Low (1-2) High (8)

Multi-Socket No Yes Yes

Max. DDR Channels 6 4 8

HBM/MCDRAM Yes No No

Dense Nodes ⇒ More Intra Node Communication
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CPU Scaling Trends over Past Decades
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Parallel Programming Models Overview

P1 P2 P3

Shared Memory

P1 P2 P3

Memory Memory Memory

P1 P2 P3

Memory Memory Memory

Shared Memory Model

SHMEM, DSM

Distributed Memory Model 

MPI (Message Passing Interface)

Partitioned Global Address Space (PGAS)

OpenSHMEM, UPC, UPC++, CAF …

• Programming models provide abstract machine models

• Models can be mapped on different types of systems

– e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

• MPI is the de-facto programming model for writing parallel applications

• MPI offers various communication primitives and data layouts

– Point-to-point, Collectives, Remote Memory Access

– Derived Datatypes

Logical shared memory
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Research Problems

• Emerging multi-/many-cores e.g., Xeon Phi, 

OpenPOWER, etc. bringing new challenges 

• High core-density 

• low memory available per core

• Diverse application requirements

• Deep Learning (Allreduce)

• Derived datatypes

• Communication middlewares are under-

optimized

• Lack of contention-free, truly zero-copy 

communication

• Overheads of MPI derived datatypes

• Lack of parallelism in communication

Communication Runtimes 

(MPI, PGAS, Tasks..)

Applications

(HPC, Deep Learning)

Emerging Hardware

(CPUs, Networks, GPUs, …)
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Motivating Example 1 – Intra-node Point-to-point MPI Communication 

Shared Memory (POSIX)

Requires two copies
No system call overhead

Better for Small Messages

Kernel-mapping (CMA/LiMIC/KNEM)

System call overhead
Lack of Load/store access
single (a.k.a “zero”) copy

Better for Large Messages

Sender

Receiver

Shared MMAP 

Region

map 

pages

Kernel 

address-space
Sender

Receiver

We require over-head free, user-space, load/store based inter-process 
communication mechanism, also called “Shared Address Space” communication
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Motivating Example 2 – Intra-node Collective Communication in MPI

• One-to-all Communication (Broadcast / Scatter)

• Kernel-level contention 

• Earlier designs1 try to mitigate the contention

• Not completely removed

P0

P2

P3 P4

P1

1

2

3

4

5

6

7

8

1

2

3

4

A B

+

temp

+

• Existing design lack zero-copy Reductions

• Remote data copied to temporary buffer 
before local process can perform operation

Process 0 Process 1

[1] S. Chakraborty, H. Subramoni, and D. K. Panda, Contention Aware Kernel-Assisted MPI Collectives for Multi/Many-core Systems, IEEE Cluster ’17, Best Paper Finalist



10Network Based Computing Laboratory

Motivating Example 3 – Derived Datatypes Processing in MPI

Receiver’s MemorySender’s Memory

Unpacking

Receiver’s TimelineSender’s Timeline

RTS

Single IOV 

(packed)

Idle

Pack

Unpack

Idle

FIN

…
.

…
.

0x11f6000

0x11f7000

0x11f8000

…
.

…
.Shared Memory

Packing

0x1bc3000

0x1bc4000

0x1bc5000
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Broad Challenge

Designing High-performance, Zero-copy, Contention-free, and 

packing-free MPI Designs by exploiting Shared-Address-Space 

Mechanisms on Modern High Core-density Architectures
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• How can communication runtimes be re-designed to tackle the challenges posed

by next-generation multi-/many-core architectures?

• Can we alleviate the bottlenecks of existing MPI intra-node designs and provide

shared address space based efficient zero-copy MPI primitives?

• What are the overheads associated with MPI derived datatype processing

designs and how can we alleviate these bottlenecks?

• How can we leverage the high core-density of modern architectures to assist MPI

communication primitives via on-loading?

• What are the application level benefits that can be achieved through the 

proposed designs?

Problem Statement



14Network Based Computing Laboratory

1. J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. K. Panda, FALCON: Efficient Designs for 

Zero-copy MPI Datatype Processing on Emerging Architectures, accepted to the 32nd IEEE Intl’ Parallel and 

Distributed Processing Symposium (IPDPS ’19), Best Paper Nominee

2. J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. K. Panda, Design and Characterization of 

Shared Address Space MPI Collectives on Modern Architectures, accepted to the 19th IEEE/ACM Intl’ 

Symposium on Cluster, Cloud, and Grid Computing (CCGrid ’19)

3. J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. K. Panda, Designing Efficient Shared Address 

Space Reduction Collectives for Multi-/Many-cores, in Proceedings of the 32nd IEEE Intl’ Parallel and 

Distributed Processing Symposium (IPDPS ’18)

4. J. Hashmi, K. Hamidouche, H. Subramoni, and D. K. Panda, Kernel-assisted Communication Engine for MPI on 

Emerging Manycore Processors, in Proceedings of the 24th IEEE Intl’ Conference on High Performance 

Computing, Data, and Analytics (HiPC ’17)

5. J. Hashmi, M. Li, H. Subramoni, and D. K. Panda, Exploiting and Evaluating OpenSHMEM on KNL Architecture, 

in Proceedings of the Fourth Workshop on OpenSHMEM and Related Technologies (OpenSHMEM’17)

6. J. Hashmi, K. Hamidouche, and D. K. Panda, Enabling Performance Efficient Runtime Support for Hybrid 

MPI+UPC++ Programming Models, in Proceedings of the 18th IEEE Intl’ Conference on High Performance 

Computing and Communications (HPCC ’16)

Primary Publications



15Network Based Computing Laboratory

1. M. Bayatpour, J. Hashmi, S. Chakraborty, H. Subramoni, and D. K. Panda, SALaR: Scalable and Adaptive 

Designs for Large Message Reduction Collectives, in Proceedings of the 2018 IEEE Intl’ Conference on Cluster 

Computing (CLUSTER ’18), Best Paper Award

2. S. Chakraborty, M. Bayatpour, J. Hashmi, H. Subramoni, and D. K. Panda, Cooperative Rendezvous Protocols 

for Improved Performance and Overlap, in Proceedings of the 2018 Intl’ Conference for High Performance 

Computing, Networking, Storage and Analysis (SC ’18), Best Student Paper Finalist

3. J. Hashmi, and D. K. Panda, Designing Shared Address Space MPI libraries in the Many-core Era, ACM 

Student Research Competition, held in conjunction with the Intl’ Conference for High Performance Computing, 

Networking, Storage and Analysis, (SC ’18), Poster

4. M. Bayatpour, J. Hashmi, S. Chakraborty, H. Subramoni, and D. K. Panda, CHAMPION: Communication-Aware 

Hardware-Assisted MPI Overlap Engine, submitted to the 2019 Intl’ Conference for High Performance 

Computing, Networking, Storage and Analysis (SC ’19), under-review

5. J. Hashmi, M. Li, H. Subramoni, and D. K. Panda, Performance of PGAS Models on KNL: A Comprehensive 

Study with MAPICH2-X, Intel eXtreme Performance User’s Group (IXPUG ’17)

6. A. Awan, K. Hamidouche, J. Hashmi, and D. K. Panda, S-Caffe: Co-designing MPI Runtimes and Caffe for 

Scalable Deep Learning on Modern GPU Clusters, in Proceedings of the 22nd ACM SIGPLAN Symposium on 

Principles and Practice of Parallel Programming (PPoPP ’17)

Secondary Publications



16Network Based Computing Laboratory

7. C. Chu, X. Lu, A. Awan, H. Subramoni, J. Hashmi, B. Elton, and D. K. Panda, Efficient and Scalable Multi-

Source Streaming Broadcast on GPU Clusters for Deep Learning, in Proceedings of the 2017 Intl’ Conference  

on Parallel Processing (ICPP ’17)

8. C. Chu, H. Subramoni, J. Hashmi, K. Khorassani, and D. K. Panda, Designing Zero-Copy and Adaptive MPI 

Derived Datatype Transfer for Multi-GPU Systems, submitted to the 48th Intl’ Conference on Parallel Processing 

(ICPP ’19) to-be-submitted

Secondary Publications



17Network Based Computing Laboratory

• Introduction

• Problem Statement

• Detailed Designs and Results

– Shared Address Space Communication Substrate

– Direct Zero-copy MPI Collectives

– Efficient Zero-copy MPI Datatypes

– Kernel-assisted Communication On-loading

• Future Research Directions

• Broader Impact on HPC

• Expected Contributions

Overview



18Network Based Computing Laboratory

Research Framework

Applications

Programming 
Models PGAS (UPC++, OpenSHMEM)

MILC

Message Passing Interface (MPI)

WRF NAS PB OMB MiniAMR CNTK TensorFlow

Shared Address Space Communication 

Substrate

FALCON: Efficient MPI Derived Datatype 

Processing Engine

Kernel-assisted Communication 

On-loading EngineProposed 
Designs

Machine-aware Adaptive Communication

Modern HPC 
Hardware

Xeon, Xeon Phi, OpenPOWER Infiniband, Omni-Path

Multi-/Many-core CPUs High-speed Networks

Message Passing Interface (MPI)

Shared Address Space Communication 

Substrate

Xeon, Xeon Phi, OpenPOWER InfiniBand, Omni-Path

OMB MiniAMR CNTK
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Shared Address Space MPI Communication

Receiver

Address-space

Sender

Address Space

rbuf

sbuf

LD/ST

Copy

MPI Rendezvous Communication (RGET)

xpmem_get()

xpmem_attach()

Cross-partition Memory (XPMEM) – Kernel Module

with user-space API that allows a process to “attach” 

to the virtual memory segment of a remote process

ReceiverSender

FIN

Memcpy()
Copy Remote 

Data 

RTS

xpmem_get

xpmem_attach

xpmem_detach

xpmem_make

MPI_Recv()MPI_Send()
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Quantifying the Overheads of XPMEM-based Communication
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2-ppn 4-ppn 8-ppn 16-ppn• XPMEM based one-to-all latency

benchmark

• Up to 65% time spent in XPMEM 

registration for short message (4K)

• Increasing PPN increases the cost of 

xpmem_get() operation

– Lock contention

– Pronounced at small messages

• How can we alleviate these overheads and 

improve the performance of shared 

address-space based MPI communication?

Relative costs of XPMEM API functions for 
different PPN using one-to-all communication 
benchmark on a single dual-socket Broadwell 
node with 14 cores.
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Proposed Registration Cache for XPMEM based Communication

• AVL tree maintains remote attached pages

• Memory de-registration is delayed

– Detach pages only in MPI_Finalize() or when 

capacity-miss occurs (FIFO)

• MPI calls on same buffers cause cache-hit

• Multiple calls to malloc/free on the remote 

buffers lead to invalid mappings 

– Access to attached buffer which has been 

freed on remote rank, is considered invalid

– Interception of malloc/free calls to invalidate 

remote mappings
A high-level flow of the proposed 

Dynamic Registration Cache

J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. K. Panda, Designing Efficient Shared Address Space Reduction Collectives for Multi-/Many-cores, in 

Proceedings of the 32nd IEEE Intl’ Parallel and Distributed Processing Symposium (IPDPS ’18)
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Impact of Optimized XPMEM design on MPI Performance

• 23% improved latency and 40% improved bandwidth over CMA even for two processes

• Takes advantage of user-space memcpy() optimizations e.g., AVX2, AVX512 etc.
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• Send/Recv based collectives

– Rely on the implementation of MPI point-to-point primitives

– Handshake overheads for each rendezvous message transfer

• Direct Shared-memory based MPI collectives

– Communication between pairs of processes realized by copying message to a shared-memory 

region (copy-in / copy-out)

• Direct Kernel-assisted MPI collective e.g., CMA, LiMIC, KNEM

– Can perform direct “read” or “write” on the user buffers with zero-copy

– Performance relies on the communication pattern of the collective

• Problems with existing approaches

– No zero-copy reductions

– Lock contention is mitigated but not removed1

Design Space of Existing MPI Collectives

[1] S. Chakraborty, H. Subramoni, and D. K. Panda, Contention Aware Kernel-Assisted MPI Collectives for Multi/Many-core Systems, IEEE Cluster ’17, Best Paper Finalist
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Design Overview of XPMEM based Direct MPI Collectives

• MPI collectives over shared address space

• Ranks exchange buffer information

– Tuple of <vaddr, len, segid>

• Ranks map remote peer’s memory segments

– Load/store access is permitted

• An intra-node barrier is enforced to ensure 

correctness and ordering

• Call our proposed XPMEM based collective 

implementation routines e.g., 

– XPMEM_bcast, XPMEM_reduce, etc.

High-level Overview of XPMEM base Direct 

MPI Collectives Implementation
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Proposed Zero-copy MPI_Allreduce

Concurrent Intra-Node Reduction by all the Processes on Data Partitions with Same Index

D2

…

DN

D1

…

DN

D1

D2

…

DN

…..

P1
P2 P3 PN

D1

D2

…

D1R’1

D2

DN

R’2

R’N

Step-1: Parallel Intra-node Partitioned Reduce
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…

…

…

Proposed Zero-copy MPI_Allreduce (Cont’d)

DN1D21 …R11

DN2D22 …R12

DNMD2M …R1M

P11

P12

P1M

…

DN1R21 …D11

DN2R22 …D12

DNMR2M …D1M

P21

P22

P2M

…

RN1D21 …D11

RN2D22 …D12

RNMD2M …D1M

PN1

PN2

PNM

…

Node-leaders concurrently perform Allreduce on respective partition of the data

Node-1

Node-2

Node-M

R11 R21 RN1RN1

R12 R22 RN2

R1M R2M RNM

Step-2: Multi-root Inter-node Allreduce
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Proposed Zero-copy MPI_Allreduce (Cont’d)

Concurrent Intra-Node Bcast by all the Processes on Data Partitions with Same Index

…

DN

D1

…

DN

D1

D2

…

DN

…..

P1
P2 P3 PN

D1

D2
…

D1

D2

DN

D1 D1 D1

D2 D2

DNDNDN

R2D2

Step-3: Parallel Intra-node Partitioned Broadcast

J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. K. Panda, Designing Efficient Shared Address Space Reduction Collectives for Multi-/Many-cores, in 

Proceedings of the 32nd IEEE Intl’ Parallel and Distributed Processing Symposium (IPDPS ’18)
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Specification Xeon Xeon Phi OpenPOWER

Processor Family Intel Broadwell Knights Landing IBM POWER-8

Processor Model E5 2680v4 KNL 7250 PPC64LE

Clock Speed 2.4 GHz 1.4 GHz 3.4 GHz

No. of Sockets 2 1 2

Cores Per Socket 14 68 10

Threads Per Core 1 4 8

RAM (DDR) 128 GB 96 GB 256 GB

Interconnect IB-EDR (100G) IB-EDR (100G) IB-EDR (100G)

Evaluation Methodology and Cluster Testbeds

• Proposed designs, implemented on MVAPICH2, is called MVPIACH2-XPMEM

• Compared against default MVPAPICH2-2.3, Intel MPI 2017, OpenMPI v3.0.0, Spectrum MPI v10.1.0.2

• OSU Microbenchmarks, MiniAMR kernel, and AlexNet DNN Training using CNTK

Hardware Specification of Cluster Testbeds
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Micro-benchmark Evaluation on Broadwell Cluster

OSU_Allreduce

• 16 nodes, 256 processes of dual-socket Broadwell system

• Up to 1.8X improvement for 4MB AllReduce and 4X improvement for 4MB Reduce, over Intel MPI

OSU_Reduce
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Applications Evaluation on Broadwell

MiniAMR (ppn=16) 

• Up to 20% benefits over IMPI for CNTK MLP model and MNIST dataset using AllReduce

• Up to 27% benefits over IMPI and up to 13% improvement over MVAPICH2 for MiniAMR 

application kernel
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30% over IMPI

23% over CMA-coll

9X over Open MPI 

KNL (Cache-mode)

• Shown for Bcast only but designs are also available for Scatter, Gather, Allgather, Alltoall

• Up to 30%, 23%, and 9X benefits over IMPI, direct CMA collectives, and Open MPI, respectively, on KNL

J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. K. Panda, Design and Characterization of Shared Address Space MPI Collectives on Modern Architectures, 

accepted to the 19th IEEE/ACM Intl’ Symposium on Cluster, Cloud, and Grid Computing (CCGrid ’19)



33Network Based Computing Laboratory

• Introduction

• Problem Statement

• Detailed Designs and Results

– Shared Address Space Communication Substrate

– Direct Zero-copy MPI Collectives

– Efficient Zero-copy MPI Datatypes

– Kernel-assisted Communication On-loading

• Future Research Directions

• Broader Impact on HPC

• Expected Contributions

Overview



34Network Based Computing Laboratory

Research Framework

Applications

Programming 
Models PGAS (UPC++, OpenSHMEM)

MILC

Message Passing Interface (MPI)

WRF NAS PB 3D-Stencil MiniAMR CNTK TensorFlow

Shared Address Space Communication 

Substrate

FALCON: Efficient MPI Derived Datatype 

Processing Engine

Kernel-assisted Communication 

On-loading EngineProposed 
Designs

Machine-aware Adaptive Communication

Modern HPC 
Hardware

Xeon, Xeon Phi, OpenPOWER InfiniBand, Omni-Path

Multi-/Many-core CPUs High-speed Networks
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MPI Derived Datatypes Overview 

MPI_Type_contiguous

MPI_Type_vector

Nested Type Example

Vector Indexed

Contig Contig

Struct

Vector of Types

Halo Exchange Example

B.x

B.y

MPI_Type_contiguous (count=B.x, MPI_DOUBLE, …)

Courtesy: https://www.mcs.anl.gov/~thakur/sc16-mpi-tutorial/slides.pdf

MPI_Type_vector (count=B.y, blocklen=1, stride=B.x+2, …)

https://www.mcs.anl.gov/~thakur/sc16-mpi-tutorial/slides.pdf
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• Two broad categories of optimizations

A. Faster Pack/Unpack

• Efficient packing [Gropp et al., Thakur et al.]

• GPU Accelerated pack/unpack [Chu et al.]

B. Layout parsing optimizations

• Flattening-on-the-fly algorithm [Träff et al.]

• Automatic type generation [Kjolstad et al.]

• This work asks fundamental question:

– “What if (A) and (B) are not required?”

• Fundamentally re-think design space

– No layout parsing overheads

– No packing/unpacking required

Standing on the shoulders of giants

Packing / Unpacking Cost
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A

BAB

Proposed
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Limitations of Existing Pack/Unpack based Designs
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WRF MILC NAS_MG

Copy Layout Translation• Layout Translation

– Flattening the layout into list of I/O vectors 

elements

– Significant overhead for nested (hierarchical) 

datatypes

– Applications can use any layout

• Pack/Unpack requires two copies

– 2X overhead for large messages!!

• Proposed Design

– FALCON — FAst and Low-overhead Zero-

copy MPI datatype processing 

COmmunication eNgine Cost breakdown of existing 
Pack/Unpack designs on Broadwell
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FALCON Designs

ReceiverSender

RTS

FIN

T

L: {IOV0, IOV1, … IOVn}

Block 0

Block 1

Block n

…
..

Copy(IOV0)

Copy(IOV1)

Copy(IOVn)

T

• Proposed four different designs

– Basic, Pipelined, Memoization, and 

Optimized Memoization

• Basic Design

– Sender and receiver translate local layouts

– Sender appends IOV list to RTS

– Receiver extracts the sender’s IOVs 

– Directly copy each IOV from sender’s 

virtual address space (CMA/XPMEM)

– XPMEM offers user-space transfers

– Receiver sends a FIN packet
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Limitations of Basic Zero-copy design

• Layout-translation is still required

• Layout-exchange

– Layouts are local to rank in MPI

– Sender has to send its layout to receiver

• Remote address translation for XPMEM 

– XPMEM attach

• High fragmentation means large IOV lists 

– RTS can exceed actual payload

• Combined overheads take significant time

– Up to 70% of total communication

– Overheads outweigh the benefits
The time for data copy has been reduced 
but at additional cost are added.
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FALCON: Memoization based Zero-copy Design

• Exploit application’s layout re-usability

– Avoids unnecessary layout exchange 

– Sender memoizes translated layouts (𝐿)

– Receiver memoizes exchanged layouts (𝐿′)

– Sender’s Hash Table 𝐻 stores < 𝑘, 𝑣 > = < ℎ, 𝐿 >

• If Hash (ℎ) is found in sender’s (𝐻)

– Sender only sends computed hash ℎ

– Receiver copies sender’s data using found 𝐿′

• If Hash (ℎ) is not found 

– Sender sends the hash ℎ + (𝐿)

– Receiver adds received ℎ + 𝐿 to (𝐻′)

– Receiver copies sender’s data using (𝐿)

ReceiverSender

FIN

Block 0

Block 1

…
.

Block n

Copy Remote 

Blocks 

Compute (ℎ)

Send (𝒉)

Lookup (𝑯′, ℎ)

Lookup (𝑯, ℎ)
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Benefits of Memoization based Zero-copy Design

Memoization based design additionally reduced the layout translation overhead

• Layout exchange overheads

• Layout translation overheads

• Address translation overhead

Memoization-based Zero-copy
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FALCON: Design Optimizations

1. Avoiding Remote Virtual Address Translation

– XPMEM attached segments are cached

– Future accesses re-use attached IOVs

– No costly registration/de-registration required

2. Communication pattern as input to the Hash function

– Computing Hash on IOV list can be costly

– Request object has enough information to uniquely identify the layout

– <Datatype, Count, Destination Rank, Tag, Communicator>

3. Re-using receiver side layouts

– Layout re-use is common at applications

– Cache translated IOVs at receiver as well

– Avoid local layout translation by receiver’s IOV



43Network Based Computing Laboratory

0

60

120

180

S
H

M

B
a
s
ic

P
ip

e

M
e

m
o

M
e

m
o

-O
p
t

Copy Layout Translation

Layout Exchange Address Translation

S
H

M

B
a
s
ic

P
ip

e

M
e

m
o

M
e

m
o

-O
p
t

S
H

M

B
a
s
ic

P
ip

e

M
e

m
o

M
e

m
o

-O
p
t

MILC WRF NAS_MG

L
a

te
n

c
y
 (

u
s
)

Impact of Optimized Memoization based Zero-copy Design

Optimized Memoization design removed all the overheads with zero-copy benefits

• Layout exchange overheads

• Layout translation overheads

• Address translation overheads

• No-overhead remaining

Optimized Memoization Design (Final)

J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. K. Panda, FALCON: Efficient Designs for Zero-copy MPI Datatype Processing on Emerging Architectures, 

accepted to the 32nd IEEE Intl’ Parallel and Distributed Processing Symposium (IPDPS ’19), Best Paper Nominee
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Application Kernel Application Domain Datatype Layout

MILC_su3_zd
Quantum 

Chromodynamics
Nested Vectors for 4D face exchanges

WRF_y_vec Atmospheric Science Nested Vectors and Subarrays

NAS_MG_z Fluid Dynamics Vectors and Nested vectors for 3D face exchanges

3D-Stencil
Stencil 

Communication
7-point stencil using Subarray datatypes

Performance Evaluation: Application Kernels

[1] T. Schneider, R. Gerstenberger, and T. Hoefler. Micro-applications for Communication Data access Patterns and MPI datatypes. In European MPI Users’ 

Group  Meeting, pages 121–131. Springer, 2012.

Communication Kernels

• We used various application kernels e.g., MILC, WRF, and NAS from DDTBench1.

• Derived datatype based communication kernels of these applications are used to measure the 

communication latencies.

• Evaluated on Broadwell, OpenPOWER, and KNL but only showing Broadwell here
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• On MILC, for Problem-B (768-KB), up to 11X over IMPI 2019

• On Broadwell, up to 2.1X and 3X improved latency over MVAPICH2-X and Intel MPI 2019

MILC Params – A = (16, 16, 32, 32); B = (32, 32, 32, 32); C = (64, 64, 32, 32); D = (128, 128, 32, 32); E = (128,128,64,64)
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WRF Params (ims, ime, is, ie) – A = (4, 140, 8, 136); B = (4, 268, 264, 8); C = (4, 524, 8, 520); D = (4, 1036, 8, 1032) 

WRF
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• On NAS_MG_z, up to 2.7X and 2.5X improvement over Intel MPI 2019 and MVAPICH2-X
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• Many-cores such as KNL, OpenPOWER have lots of SMT cores

– Can we dedicate some cores to derive communication?

• Intra-node MPI transfers mainly use blocking memory copies

– Can we partition large-message communication

• Broad Questions

– Can we design an efficient mechanism to effectively utilize KNL resources and bring 

concurrency to the communication phases in MPI?

– Can we design a communication engine that can asynchronously derive the 

communication in MPI?

• Kernel-assisted Communication on-loading Engine

– New designs to bring concurrency to communication

– Performance, portability, and programming abstraction

Assisted Communication on Many-cores
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RTS
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MPI_Irecv
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Enqueue_wq()

k-threads

On-load Engine

wake_up

Poll(WQ)

sched_yield

DEQ(item)

notify
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y(

)

do_work 

(*func, args…)

create_workreq()

Work Queue

...

goto yield

FIN

Status Queue

..

.
✔ ✔

Poll()

Designing Kernel-assisted Communication On-loading Engine

• Two design components

– Programming abstraction

– Kernel-module implementation

• High-level API used by MPI 

runtime to delegate tasks

– Integration with MVAPICH2

• Kernel module handles 

scheduling, threading, task and 

signaling queues
MPI_Wait()

J. Hashmi, K. Hamidouche, H. Subramoni, and D. K. Panda, Kernel-assisted Communication Engine for MPI on Emerging Manycore Processors, in Proceedings of the 24th 

IEEE Intl’ Conference on High Performance Computing, Data, and Analytics (HiPC ’17)
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Realizing Zero-copy Communication using On-load Engine

• Example of on-loading function 

– e.g., Parallel kernel-mapped zero-copy communication

– Multiple threads perform memory-mapped zero-copy

– Map sender and receiver pages and copy the data
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Microbenchmark Evaluation on KNL (Latency)

Latency (MCDRAM) Latency (DDR)

33% 20%

49%42%

• OMB osu_latency benchmark by allocating memory on MCDRAM and DDR using two processes

• Four kernel threads running in assisted mode.

• Up to 42% and 49% improved latency on a single KNL when using MCDRAM and DDR, respectively
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Application Evaluations on KNL 

• HPCG with MPI+OpenMP running 8 OpenMP threads per MPI process.

– Main benefits come from DDOT, MG, and DDOT Allreduce phases of HPCG

– Overall execution time is reduced by 15% over Intel MPI

• CNTK Multi-level Perceptron (MLP) feed-forward neural network using MNIST dataset

15%

6%

HPCG CNTK (MLP+MNIST) Training 
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Future Research Directions

Machine-aware Communication

• Modern CPUs have diverse on-chip interconnects and deeper memory 

hierarchies

– E.g., ADM EPYC with 16 NUMA domains

– Intel Skylake “Mesh” interconnect (X-Y routing)

• Communication designs need to adapt to machine characteristics to deliver 

best performance

• Broad Questions?

– How to extract machine characteristics and create communication templates? 

– How to re-design MPI and PGAS runtimes using machine characteristics?
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Future Research Directions (Cont’d)

Applicability to Hybrid Programming Models

• Hybrid (MPI+“X”) programming is gaining traction for next-generation systems

• MPI+OpenMP and MPI+PGAS has shown promising results for diverse 

applications

• Broad Questions?

– How to exploit shared-address-space based designs for MPI+X models?

– What are the challenges, solutions and benefits?

– Can we provide a unified abstraction to exploit proposed designs for MPI+X 

runtimes? 
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Overview of the MVAPICH2 Project

• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs  (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 3,000 organizations in 88 countries

– More than 540,000 (> 0.5 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (Nov ‘18 ranking)

• 3rd ranked 10,649,640-core cluster (Sunway TaihuLight) at  NSC, Wuxi, China

• 14th, 556,104 cores (Oakforest-PACS) in Japan

• 17th, 367,024 cores (Stampede2) at TACC

• 27th, 241,108-core (Pleiades) at NASA and many others

– Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, and OpenHPC)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade

Partner in the upcoming TACC Frontera System

http://mvapich.cse.ohio-state.edu/
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• MVAPICH2-X 2.3rc2 (04/02/2019)

– XPMEM-based contention-free MPI collectives (Broadcast, Gather, Scatter, Allgather)

– Extended support for XPMEM based reduction collectives on PSM channel

• MVAPICH2-X 2.3rc1 (09/21/2018)

– Support for XPMEM-based point-to-point operations 

– Efficient registration cache for XPMEM communication

– Efficient truly zero-copy reductions (MPI_Reduce and MPI_Allreduce)

• Upcoming*

– FALCON: Efficient Zero-copy MPI Derived Datatypes

– Assisted communication runtimes

MVAPICH2 Releases
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Impact on HPC Community

• Fundamental designs geared towards next-generation HPC systems

– High core-density architectures

• Designs made available to the HPC community via MVAPICH2-X releases

– Used by wider HPC and DL community

• Other communication runtimes beginning to adopt the core ideas

– Shared address space communication

– Efficient Datatype processing 

• The designs as part of the MVAPICH2-X software stack

• Proposed designs are empowering several of Top500 supercomputers

– TACC Stampede2, Frontera

– OSC Owens, Pitzer
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• High core-density architectures are building next-generation ultra-scale systems

– Communication middlewares need to be re-designed to meet the diversity

• This thesis optimizes MPI communication for emerging multi-/many-cores

– Point-to-point, Collectives, Datatype processing

• Presents novel Shared Address Space communication mechanism 

– Direct load/store communication

– Efficient caching mechanisms

• Fundamentally re-think and propose new MPI datatype designs

– Efficient zero-copy datatype processing

• Proposed and designed an on-load engine abstraction with concurrency, portability, 

and programmability for modern many-core architectures

• Significant impact on the community in transition to next-generation multi-/many-cores

• Broader outreach through MVAPICH2/MVAPICH2-X public releases 

Expected Contributions
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Thank You!

Questions?


